
1

Things Could Get Worse:
Ideas About Regression Testing

Michael Bolton
http://www.developsense.com

September 2012

Michael Bolton
michael@developsense.com
http://www.developsense.com

Great Wall of China
August, 2012

The Russian Optimist

Things couldn’t
possibly get any

worse!

Oh, come on!
Things could
get worse!

Four Concepts of Regression Testing

Any test
that we’ve
performed

before.

A set of
automated checks,

run periodically
and repeatedly.

Testing that
we perform
after some

change.

Testing to probe
whether quality
has got worse.

Two Key Notions of Regression Testing

Any test
that we’ve
performed

before.

Testing to probe
whether quality
has got worse.

A repeated test might not show that quality has got
worse… and a test that shows that quality has got
worse might be a new test.

2

A Regression Testing Hypothesis
• Regression is an important product & project risk.
• Programmers are working so fast (especially in

Agile), there’s a danger of breaking stuff.
• Breaking stuff that worked before is embarrassing.
• Breaking stuff that was broken and fixed before is

really embarrassing.
• THEREFORE we should focus the bulk of our

attention on
– tests that we’ve performed before
– automated checks
– testing after changes

What Wikipedia Says

• “The intent of regression testing is to ensure that a
change, such as a bug fix, did not introduce new
faults.”

• “One of the main reasons for regression testing is
to determine whether a change in one part of the
software affects other parts of the software.”

• “Regression testing can be used to test a system
efficiently by systematically selecting the
appropriate minimum set of tests needed to
adequately cover a particular change.”

Testing is Always Sampling

All the risks there are.

The risks
we can imagine.

The risks we know about.

How Do You Cover An Ocean?

All the tests we could perform.

The tests
we have performed.

The tests we repeat.

“Any test that we’ve performed before”
• Is the primary purpose of testing to reveal new

information about the product?
• If so, what is the information value of repeating a

test that we’ve already performed?

How much time should we spend looking behind us?

Checking vs. Testing
A CHECK is…
1. An observation linked to…
2. A decision rule such that…
3. both the observation and the decision rule can be applied

non-sapiently
A non-sapient activity can be performed

by a human who has been
instructed not to think

(and who is slow and variable)

by a machine
that can’t think

(but that is quick and precise)

3

Checks
Very good for
• Decidable propositions
• Anticipated risks
• Confirmation
• Verification
• Rapid execution
• Some bugs
• Precision
• Functional correctness
• Low-level checking

Maybe not so good for
• Open-ended questions
• Unanticipated risks
• Exploration
• Qualitative evaluation
• Reflection
• Most issues
• Nuance
• Parafunctional quality
• High-level testing

Pass or Fail?
• When a check “passes”, it usually means “we

(or the automation) didn’t detect anything that
might be a problem”.

• When a check “fails”, it usually means “we (or
the automation) detected something that
might be a problem”.

• Instead of “pass or fail”, skilled testers focus
on a more fundamental question:

Do Tests Really Pass or Fail?

Might it be better to ask,
“What can we learn from this test?

And what else can we learn?”

Insufficient Regression Check Focus
• may suppress or delay discovery of

functional problems
• may suppress other kinds of variation
• may suppress learning about the API (when

checks are performed without automation
assistance)

• increases bug investigation and reporting
time (when not done by programmers)

• increases the length of the feedback loop
(when not done by programmers)

Excessive Regression Check Focus

• may suppress discovery of risks
– especially when that focus is on the execution

of checks.
• may suppress discovery of unchecked

problems
• may suppress discovery of unnoticed value
• may suppress learning about the program

generally
• may suppress learning about user's task
• may suppress certain kinds of variation

“Tests to probe whether quality has got worse.”

Testability

Supportability

Compatibility
Installability
Performance
Scalability

Security

Charisma

Usability
Reliability
Capability

= Can be checked

= Some checking helps

= Must be tested

4

What Else Could We Observe?

• Every test is multivariate
– though not every check is multivariate

• A focus on a single oracle can distract us
from other things, so…

• If you’re going to check, try checking
several things at once. Gather lots of data!

• Look at the data! Take advantage of human
pattern recognition.

Is Regression The Biggest Risk?
• Before the Agile Manifesto was declared, a group of

experienced test managers reported that regression
problems ran from 6-15% of discovered problems

• In Agile shops, we now (supposedly) have
– TDD
– unit tests
– pairing
– configuration management
– build and version control
– continuous integration

• …many of which already check for regression
• How serious a risk is regression given these things?
• If so, can testing or checking fix it?
• Are we paying attention to what regression tells us?
• Is regression really a symptom of bigger problems?

Maybe Regression Problems Are Symptoms

• If you see a consistent pattern of regression
– maybe failing checks or tests aren’t your biggest problem
– maybe the issue is that you’ve got favourable conditions

for regression to happen

Maybe FEAR of regression
is a symptom, too.

• Pay attention to feelings, worries, obsessions.
• Feelings are signals; what are they signaling?
• Consider addressing the problems behind the fear.

The Goalie Problem

Even on a great team, great goaltending will miss some shots.

The Goalie Problem

Not even great goaltending can make up for a weak defense.

5

Dimensions of Testing Costs
€ Design time
€ Development cost
€ Maintenance cost
€ Transfer cost
€ Equipment cost
€ Setup cost
€ Execution cost
€ Opportunity cost

How do these apply to checks? To other kinds of testing?

To test is to construct THREE stories.

Level 1: A story about the status of the PRODUCT…
…about how it failed, and how it might fail...
…in ways that matter to your various clients.

Level 2: A story about HOW YOU TESTED it…
…how you configured, operated and observed it…
…about what you haven’t tested, yet…
…and won’t test, at all…

Level 3: A story about the VALUE of the testing…
…what the risks and costs of testing are…
…how testable (or not) the product is…
…things that make testing harder or slower…
…what you need and what you recommend.

Product any good?

How do you know?

Why should I be pleased
with your work?

What Wikipedia Says

• “The intent of regression testing is to ensure
that a change, such as a bug fix, did not
introduce new faults”

• AND ALSO to investigate whether the fix
addressed the general instance of the
problem, or just the specific

• AND ALSO to investigate whether there
were faults we missed in that area

What Wikipedia Says

• “One of the main reasons for regression
testing is to determine whether a change in
one part of the software affects other parts
of the software.”

• AND ALSO to learn about the relationships
between parts of the software, to see where
future changes might have other affects

• AND ALSO to see how changes in other
things affect the system

What Wikipedia Says
• “Regression testing can be used to test a system

efficiently by systematically selecting the
appropriate minimum set of tests needed to
adequately cover a particular change.”

• AND ALSO to question the notion of “the
appropriate minimum number of tests”

• AND ALSO, especially in design, to question our
notion of “adequate coverage”.

• AND ALSO to increase dramatically the ways in
which we could observe the product

• But how do you “systematically select”?

Regression Test Focus
• Heuristics from Karen Johnson: RCRCRC

– Recent (what has changed lately?)
– Core (what’s really common and critical?)
– Risk (where is there danger, complexity, brittleness?)
– Configuration-sensitive (what’s variable and vulnerable?)
– Repaired (did it really get fixed? did it break something else?)
– Chronic (what are the patterns in collections of problems?)

http://searchsoftwarequality.techtarget.com/tip/A-software-experts-
heuristic-for-regression-testing

• We could add even more Rs and Cs!
– Randomized (high-volume, high-speed automated checks)

• but beware the oracle problem
– Confusing (poorly-understood or poorly-agreed-upon areas)
– Rich (complex scenarios that would shake out lots of problems)
– Compelling (bugs that spark newspaper stories)

6

Reasons to Repeat
• Heuristics from Rapid Software Testing

– Recharge (old tests regain power when products change)
– Intermittency (some tests take repetition to reveal bugs)
– Retry (human observers see things differently each time)
– Mutation (you can change something about the test)
– Benchmark (tracking progress requires repetition)
– Importance (the test is too critical to put aside)
– Mandate (sometimes we do exactly what we’re told)
– Inexpensiveness (why not run a test if it’s cheap?)
– Enoughness (some suites might give adequate coverage)
– Avoidance/indifference (you might repeat a test when

testing isn’t really the goal)

http://www.satisfice.com/repeatable.shtml

Regression Automation Heuristics
• Heuristics from Mike Kelly

– To recreate the path to a specific bug
– To capture current functionality to address

potential breakage problems
– To automate checks in areas that are so

important they must be checked
– To address code coverage gaps
– To addressing requirements coverage gaps
– To address a particular model of the problem

space (e.g. all-pairs coverage)
http://www.michaeldkelly.com (look for it under “media”)

OR
http://bit.ly/Ugdge8

A Regression Testing Hypothesis
• Regression is an important product & project risk
• and there are other important risks.
• Programmers are working so fast (especially in

Agile), there’s a danger of breaking stuff.
• Maybe they should maintain a sustainable pace
• Maybe they should work more carefully.
• Maybe they should work more collaboratively.
• Maybe the stuff they’re working on should be less

interdependent.
– NOTE: testers can identify project risks like these

but be careful: we don’t manage the programmers or
the project

REVISED
A Regression Testing Hypothesis
• Breaking stuff that worked before is embarrassing.
• Breaking stuff that was broken and fixed before is

really embarrassing.
• and having bugs that we never noticed at all is also

embarrassing
• THEREFORE we should focus attention on

– tests that we’ve performed before
– automated checks
– testing after changes

• AND ALSO ON
– performing new testing that extends coverage, giving
– a more comprehensive understanding of the product and
– a reasonable chance of identifying regression problems

REVISED

Contrasting Strategy Ideas
checking

passing checks
large number of checks

noting regression problems
detecting regression

preventing regression
quicker development

making sure that our checks
are passing

testing to search for bugs we
anticipate

testing
checks that trigger questions
increasing test coverage
noting problems generally
preventing regression
preventing problems
more reliable development
making sure that we
understand the product
testing to learn about the
product and new risk ideas

One of the lessons to be learned … is that the sheer number of
tests performed is of little significance in itself. Too often, the
series of tests simply proves how good the computer is at
doing the same things with different numbers. As in many
instances, we are probably misled here by our experiences
with people, whose inherent reliability on repetitive work is at
best variable. With a computer program, however, the greater
problem is to prove adaptability, something which is not trivial
in human functions either. Consequently we must be sure that
each test does some work not done by previous tests. To do
this, we must struggle to develop a suspicious nature as well as
a lively imagination.”

Ancient Wisdom

Herbert Leeds and Gerald M. Weinberg, Computer Programming Fundamentals, 1961

7

Final Ideas
• Sort out the difference between regression and

repetition.
• Think of regression testing as an airbag, not as a

substitute for good driving.
• Examine the motives for regression testing.
• Examine the causes of regression.
• Ask how we might detect and prevent regression

more quickly, less expensively, more reliably.
• Consider what your testing is telling you

– and tell that story.
• Think of checking as an element of testing.
• Think cost vs. value.
• Focus on adaptability, not just repeatability.

Questions?

Michael Bolton
michael@developsense.com
http://www.developsense.com

Twitter: @michaelbolton
Don’t bother with Facebook.

Or LinkedIn.

