
dddd

Copyright © 1995-2010, Satisfice, Inc. and DevelopSense

A Master Class in
Exploratory Testing

Michael Bolton
DevelopSense

St. Petersburg, Russia
November 2010

2

KEY IDEA

3

Test Strategy

� Strategy: “The set of ideas that guide your test design.”

� Logistics: “The set of ideas that guide your application of
resources to fulfilling the test strategy.”
� Plan: “The set of ideas that guide your test project.”
� A good test strategy is:

− Product-Specific
− Risk-focused
− Diversified
− Practical

4

One way to make a strategy…

1. Learn the product.
2. Think of important potential problems.
3. Think of how to search the product for those problems.
4. Think of how to search the product, in general.

Think of ways that:
� will take advantage of the resources you have.
� comprise a mix of different techniques.
� comprise something that you really can actually do.
� serve the specific mission you are expected to fulfill.

Visual

5

Tests

Project
Environment

Product
Elements

Quality
Criteria

Perceived
Quality

A Heuristic Test Strategy Model

6

Project
Environment

Tests

Product
Elements

Quality
Criteria

Perceived
Quality

A Heuristic Test Strategy Model

dddd

Copyright © 1995-2010, Satisfice, Inc. and DevelopSense

7

Project Environment
Ways to Understand Our Context

� Customers
− Anyone who is a client of the test project.

� Information
− Information about the product or project that is needed for testing.

� Developer relations
− How you get along with the programmers.

� Team
− Anyone who will perform or support testing.

� Equipment & tools
− Hardware, software, or documents required to administer testing.

� Schedule
− The sequence, duration, and synchronization of project events.

� Test Items
− The product to be tested.

� Deliverables
− The observable products of the test project. 8

Quality Criteria
Identifying Value and Threats To It

� Capability � Compatibility
� Reliability � Supportability
� Usability � Testability
� Security
� Scalability

�Maintainability
� Portability

� Performance � Localizability
� Installability

Many test approaches focus on Capability
(functionality) and underemphasize the other criteria

9

Product Elements
Ways to Model and Cover The Product

� Structure
− What are the pieces and how do they fit together?

� Function
− What does the product do?

� Data
− What does the product do things to?

� Platform
− What does the product depend upon?

� Operations
− How do people actually use the program?

� Time
− How is the product affected by time?

10

Test Techniques
General Ways to Test

� Function testing
− Test what it does

� Domain testing
− Divide and conquer the data

� Stress testing
− Overwhelm or starve the product

� Flow testing
− Do one thing after another after another

� Scenario testing
− Test to a compelling story

11

Test Techniques
General Ways to Test

� Claims testing
− Test everything that people say it should do

� User testing
− Involve the users (or systematically simulate them)

� Risk testing
− Imagine a problem, and then look for it

� Automatic testing
− Perform zillions of tests, aided by machines

Thirty-Six Testing Heuristics

Customers
Information
Developer relations
Team
Equipment & tools
Schedule
Test Items
Deliverables

Structures
Functions
Data
Platforms
Operations
Time

Capability
Reliability
Usability
Security
Scalability
Performance
Installability
Compatibility
Supportability
Testability
Maintainability
Portability
Localizability

Function testing
Domain testing
Stress testing
Flow testing
Scenario testing
Claims testing
User testing
Risk testing
Automatic testing

Project
Environment

Product
Elements

Quality Criteria

Test
Techniques

dddd

Copyright © 1995-2010, Satisfice, Inc. and DevelopSense

13

How much is enough?
Diverse Half-Measures

� There is no single technique that finds all bugs.
� We can’t do any technique perfectly.
� We can’t do all conceivable techniques.

Use “diverse half-measures”-- lots of different
points of view, approaches, techniques, even
if no one strategy is performed completely.

The Four-Part Risk Story

� Some person
� might suffer harm or loss
� because of a vulnerability in the product
� triggered by some threat.

Excellent checking reduces
risks of unexpected implementation

behaviour and of change.

Excellent (risk-based) testing
is less about anticipating and calculating,

and more about learning.

15

Value (or Risk) as a Simplifying Factor
Find problems that matter

Instead of thinking pass vs. fail,
think problem vs. no problem.

� In general it can vastly simplify testing if we focus
on whether the product has a problem that matters,
rather than whether the product merely satisfies all
relevant standards.

� Effective testing requires that we understand
standards as they relate to how our clients value
the product.

Risk-Based Test Project Cycle:
Testing itself is risk analysis.

Experience
Problems

In the Field

Analyze
Potential

Risks

Analyze
Actual
Risks

Short
loop

Long
loop

New
Project

ship

Exploratory
vs. ScriptedPerform

Appropriate
Testing

Experience
Problems &

Potentialities

16

17

To test a very simple product meticulously,
part of a complex product meticulously,
or to maximize test integrity…

1. Start the test from a known (clean) state.
2. Prefer simple, deterministic actions.
3. Trace test steps to a specified model.
4. Follow established and consistent lab procedures.
5. Make specific predictions, observations and records.
6. Make it easy to reproduce (automation helps).

18

To find unexpected problems,
elusive problems that occur in sustained field use,
or more problems quickly in a complex product…

1. Start from different states (not necessarily clean).
2. Prefer complex, challenging actions.
3. Generate tests from a variety of models.
4. Question your lab procedures and tools.
5. Try to see everything with open expectations.
6. Make the test hard to pass, instead of easy to reproduce.

dddd

Copyright © 1995-2010, Satisfice, Inc. and DevelopSense

19

Can tests be repeated?

� You can’t be certain that you control all the factors
that might matter to fulfill the purpose of a test.
� So, to “repeat a test” means that you believe you

are repeating some part of a test that matters, while
other parts of that test may not be repeated.
� Even if you repeat “just 1% of a test”, it may be fair

to say that you have repeated that test in every way
that matters.

20

Should tests be repeated?

� Consider cost vs. value.
� Consider what could be gained from some of the

many tests you have not yet ever performed.
� To test is to question:

− Why ask the same question again?
− Why ask the same question again?
− Why ask the same question again?
− Why ask the same question again?

� You should know why, and why not, to repeat
tests.

Annoying, eh?

Don’t Repeat Tests: Debate

� I will now argue why, any time you are tempted to
repeat even part of a test, you should not.
� I want you to argue the other side: provide reasons

why it might be a good thing to repeat a test.

repeat test new test

The Fallacy of Repeated Tests:
Clearing Mines

mines

Totally Repeatable Tests
Won’t Clear the Minefield

mines fixes

Variable Tests are
Therefore More Effective

mines fixes

dddd

Copyright © 1995-2010, Satisfice, Inc. and DevelopSense

Reasons to Repeat

1. Recharge
2. Retry
3. Intermittence
4. Mutation
5. Benchmark
6. Importance
7. Inexpensiveness
8. Mandated
9. Enoughness
10. Avoidance/Indifference

Why Do You Think
You Need to Repeat Tests?

� You need to repeat tests to detect unexpected and
undesired change, yet…

� If your regression tests are consistently revealing bugs,
those bugs are only symptoms of a larger problem

� The larger problem is that people are making changes
without being aware of the consequences of the changes

� A large enough regression suite is incomprehensible

27

Exploiting Variation To Find More Bugs

� Micro-behaviors: Unreliable and distractible humans make each test a little bit
new each time through.

� Randomness: Can protect you from unconscious bias.
� Data Substitution: The same actions may have dramatically different results

when tried on a different database, or with different input.
� Platform Substitution: Supposedly equivalent platforms may not be.
� Timing/Concurrency Variations: The same actions may have different results

depending on the time frame in which they occur and other concurrent events.
� Scenario Variation: The same functions may operate differently when

employed in a different flow or context.
� State Pollution: Hidden variables of all kinds frequently exert influence in a

complex system. By varying the order, magnitude, and types of actions, we may
accelerate state pollution, and discover otherwise rare bugs.

� Sensitivities and Expectations: Different testers may be sensitive to different
factors, or make different observations. The same tester may see different things at
different times or when intentionally shifting focus to different things.

Wordpad

28

KEY IDEA

29

Exploratory Testing Is…

� an approach to software testing…

� that emphasizes the personal freedom and
responsibility of each tester to continually
optimize the value of his work…

� by treating learning, test design and test
execution as mutually supportive activities that
run in parallel throughout the project.

(applicable to any test technique)

(optimize how?)

Questions About Exploration…
arrows and cycles

(value seeking)

Where does
exploration
come from?

What happens when
the unexpected
happens during

exploration?

What do we do
with what we

learn?

Will everyone
explore the same way?

dddd

Copyright © 1995-2010, Satisfice, Inc. and DevelopSense

Questions About Scripts…
arrows and cycles

Where do scripts
come from?

What happens when the
unexpected happens

during a script?

What do we do
with what we

learn?
Will everyone follow the same

script the same way?

(task performing)

Answers About Scripts…
arrows and cycles

Where do scripts
come from?

What happens when the
unexpected happens

during a script?

What do we do
with what we

learn?
Will everyone follow the same

script the same way?

(task performing)

Questions About Exploration…
arrows and cycles

(value seeking)

Where does
exploration
come from?

What happens when
the unexpected
happens during

exploration?

What do we do
with what we

learn?

Will everyone
explore the same way?

Exploration is Not Just Action
arrows and cycles

Exploratory behavior acts on itself.

Scripted behavior does not.

You can put them together!
arrows and cycles

(value seeking)

(task performing)

You can put them together!
arrows and cycles

dddd

Copyright © 1995-2010, Satisfice, Inc. and DevelopSense

You can put them together!
arrows and cycles

How do you do this well?

� With…
� Skills
� Heuristics
� Diversity
� Leadership
� Good notes and automatic logging
�…oh and sometimes… with scripting.

39

ET is a Structured Process

� Exploratory testing, as we talk about it, is a structured process
conducted by a skilled tester, or by lesser skilled testers or users
working under supervision.

� The structure of ET comes from many sources:
− Test design heuristics
− Chartering
− Time boxing
− Perceived product risks
− The nature of specific tests
− The structure of the product being tested
− The process of learning the product
− Development activities
− Constraints and resources afforded by the project
− The skills, talents, and interests of the tester
− The overall mission of testing

In other words,
it’s not “random”,

but systematic.

IP Address

See “Exploratory Dynamics” in the Appendices. 40

ET is a Structured Process

In excellent exploratory testing, one structure
tends to dominate all the others:

Exploratory testers construct a compelling
story of their testing. It is this story that

gives ET a backbone.

41

To test is to compose, edit, narrate,
and justify two parallel stories.

You must tell a story about the product…

…about how it failed, and how it might fail...
…in ways that matter to your various clients.

But also tell a story about testing…

…how you configured, operated and observed it…
…about what you haven’t tested, yet…
…or won’t test, at all…
…and about why what you did was good enough.

The Structure of Testing

42

Analysis Experiments Knowledge

Produces Informs

- Configure
- Operate
- Observe
- Evaluate

- Testing Knowledge
- Technical Knowledge
- Domain Knowledge
- General Knowledge

Test
Procedures

Question

Answer

Investigate
bugs

Informs

Testing Story

Produces

• Mission
• Givens
• Work Products

• Risk
• Coverage
• Oracles
• Cost/Value
• Troubleshooting

Product
Story

dddd

Copyright © 1995-2010, Satisfice, Inc. and DevelopSense

43

How to Start?
Pick a Useful, Fun, or Easy Starting Point.

Analysis Experiment Knowledge

Produces Informs

Informs

Testing Story

Produces

What do I need to produce for my client?
What has already been done?

What kind of testing
am I good at?

What obstacles threaten
my success?

What do I know?
What do I need to learn?

Do I have a product?
What can I do with

the product?

44

How to Find an Elusive Bug

1. Look over your recent tests and find a pattern there.
2. With your next few tests, violate the old pattern.
3. Prefer MFAT (multiple factors at a time).
4. Broaden and vary your observations.

Boundary Testing

45

What to Do if You are Confused

1. Simplify your tests.
2. Conserve states.
3. Frequently repeat your actions.
4. Frequently return to a known state.
5. Prefer OFAT heuristic (one factor at a time).
6. Make precise observations.

Dice Game

46

Test Design
Testing to Learn vs. Testing to Search

� Testing (primarily) to Learn
− Forming a mental model of the product.
− Learning what the product is supposed to do.
− Inventorying the product elements you may want to test.
− Looking at consistency relationships and trying various oracles.
− Generating test data.
− Considering testability and trying potentially useful tools.
− Experimenting with different ways of testing it.
− Reporting bugs that you find.

� Testing (primarily) to Search
− Using your detailed product knowledge, and any relevant tools, to

systematically exercise the product in every important way.
− Using careful observation and good oracles to detect important bugs.
− Modifying and diversifying your tests to make them more powerful.
− Reporting bugs that you find.

Test Design Motivations
Testing to Learn vs. Testing to Search

− Starting a new project.

− Reflective thought or research about test design

− Seeing a new feature for the first time.

− Smoke or sanity tests on a new build

− Testing a product deeply to reveal important bugs.

− Investigating a particular bug.

− Re-testing a product after a change.

− Repeated execution of detailed procedural test scripts.

L

L

L
S
S
S

Compare these Situations:

L

S

S

S

L

L S

SL

47 48

High Learning ET:
Explore These Things

� Composition
− Affordances: Interfaces to the product.
− Dimensions & Variables: Product space and what changes within it.
− Relationships & Interactions: functions that cooperate or interfere.
− Navigation: Where things are and how to get to them.

� Conformance
− Benefits: What the product is good for-- when it has no bugs in it.
− Consistencies: Fulfillment of logical, factual, and cultural expectations.
− Oracles: Specific mechanisms or principles by which you can spot bugs.
− Bugs and Risks: Specific problems and potential problems that matter.

� Context (of the Product)
− History: Where the product has been, and how it came to be.
− Operations: Its users and the conditions under which it will be used.

� Conditions (of Testing)
− Attitudes: What your clients care about and what they want from you.
− Complexities & Challenges: Discover the hardest things to test.
− Resources: Discover tools and information that might help you test.

Lyndsay Machine

dddd

Copyright © 1995-2010, Satisfice, Inc. and DevelopSense

49

Contrasting Approaches

In scripted testing, tests are first
designed and recorded. Then they
may be executed at some later time
or by a different tester.

In exploratory testing, tests are
designed and executed at the
same time, and they are not
necessarily recorded, but may be.

Product

Test
Scripts

Test Ideas

50

Contrasting Approaches

Scripted testing is about
controlling test execution.

Exploratory testing is about
improving test design.

Product

Test
Scripts

Test Ideas

51

Contrasting Approaches

Scripted testing is like
making a prepared speech.
It is guided by pre-conceived ideas.

Exploratory testing is like
having a conversation.
It is self-guided.

Product

Test
Scripts

Test Ideas

Exploratory Skills and Tactics

� Modeling
� Resourcing
� Questioning
� Chartering
� Observing
� Manipulating
� Collaborating
� Generating & Elaborating
� Overproduction &

Abandonment

� Abandonment &
Recovery

� Refocusing
� Alternating
� Branching &

Backtracking
� Conjecturing
� Recording
� Reporting

52

Exploratory Dynamics

Warming up vs. cruising vs. cooling down

Coverage vs. oracles

Test design vs. execution

Requirement vs. requirement

Feature vs. feature

Current version vs. old versions

Lab conditions vs. field conditions

Your ideas vs.
other peoples’ ideas

Solo work vs. team effort

Product vs. project
Working with the product vs.
working with the developer

Working with the product vs.
reading about the product

Doing vs. describing

Data gathering vs. data analysis

Careful vs. quick
Doing vs. thinking

Testing vs. resting

Individual tests vs. general lab
procedures and infrastructure

Testing vs. touring

53

Mixing Scripting and Exploration

pure scripted freestyle exploratory

When we say “exploratory testing” and don’t qualify it, we mean
anything on the exploratory side of this continuum.

chartersvague scripts
fragmentary
test cases roles

54

dddd

Copyright © 1995-2010, Satisfice, Inc. and DevelopSense

55

Blending Scripted & Exploratory

� Generic scripts: specify general test procedures and apply them to different
parts of a test coverage outline.

� Vague scripts: specify a test step-by-step, but leave out any detail that does not
absolutely need to be pre-specified.

� Improvisation: have scripts, but encourage deviation from them, too.
� Fragmentary cases: specify tests as single sentences or phrases.
� Test Coverage Outline: use outline of product elements and have tester

construct tests from it on the fly.
� Risk Catalog: specify types of problems to look for, then construct tests on the

fly to find each one.
� Exploratory Charters: specify 90 minutes of testing in two sentences or less.
� Roles: Give each tester a standing role to test a certain part of the product. Leave

the rest up to them.
� Heuristics: Train exploratory testers to use standardized test design heuristics.
� SBTM: Consider using Session-Based Test Management, a formalized method of

exploratory test management. (http://www.satisfice.com/sbtm).
56

Test Design and Execution

Guide testers with personal supervision and
concise documentation of test ideas. Meanwhile,
train them so that they can guide themselves and
be accountable for increasingly challenging work.

Test
Ideas

Achieve excellent test design by
exploring different test designs

while actually testing Product

Product
or spec

57

� How often do you account for your progress?

� If you have any autonomy at all, you can risk
investing some time in
− learning
− thinking
− refining approaches
− better tests

Allow some disposable time
Self-management is good!

58

Allow some disposable time

. If it turns out that you’ve made a bad
investment…oh well

☺ If it turns out that you’ve made a good
investment, you might have
− learned something about the product
− invented a more powerful test
− found a bug
− done a better job
− surprised and impressed your manager

59

“Plunge in and Quit” Heuristic

� This benefits from disposable time– that part of your
work not scrutinized in detail.

� Plunge in and quit means you can start something
without committing to finish it successfully, and
therefore you don’t need a plan.

� Several cycles of this is a great way to discover a plan.

Whenever you are called upon to test
something very complex or frightening, plunge in!

After a little while, if you are very confused
or find yourself stuck, quit!

60

Exploratory Branching:
Distractions are good!

New test
idea

New test
idea

New test
idea

New test ideas occur
continually during an
ET session.

dddd

Copyright © 1995-2010, Satisfice, Inc. and DevelopSense

61

“Long Leash” Heuristic

but periodically take stock
of your status against your mission

Let yourself be distracted…
‘cause you never know
what you’ll find…

Important Questions

� Variations:
− Why are you planning to run that test?
− Why are you running that test right now?
− Why did you run that test?

Important Questions

� Variations:
− Why aren't you planning to run that test?
− Why aren't you running that test right now?
− Why didn't you run that test?

Important Questions

� Variations:
− Why didn't you find that bug earlier?
− Why did you apparently ignore that requirement?

Important Questions

� Variations:
− Why do you say that this isn't working properly?
− What requirement is being left unfulfilled here?
− Why do you think that's a requirement?
− For whom might this be a problem?
− Do you think a user would ever do that?

Even more generally…

� Variations:
− Why are you not doing that?
− How does this test relate to a requirement?
− How does this test relate to a risk?
− How does this test relate to your mission?

dddd

Copyright © 1995-2010, Satisfice, Inc. and DevelopSense

What is test framing?

Test framing is
the set of logical connections

that structure and inform a test.

Framing ~= Traceability

� Framing is, in essence, traceability…
� …but typically we hear people talk of

traceability in an impoverished way:
between tests and requirements
documents

� Can you demonstrate traceability
between tests and implicit
requirements?

Much More Traceability

1. Product traces to specifications.
2. Specifications trace to standards.
3. Test sessions trace to product versions.
4. Test sessions trace to specifications.
5. Test sessions trace to logs which trace to product, playbook and

specifications.
6. Test sessions trace to charters and charters to playbook.
7. Playbook traces to standards.
8. Playbook traces to specifications.
9. Playbook traces to risks which trace to specifications…
10. Tests trace to risk…
11. Tests trace to implicit requirements…
12. Tests trace to other tests…

Vocabulary

� structure
− that which forms the unchanging parts and relationships of a

system; “that which remains”

� logic
− A means of convincing or proving e.g. “the logic of the

situation”, the facts which dictate what action is rationally to
be taken

� narration
− telling a story that fits in time

� framing
− placing the test, via logic and narrative, in logical relationship

with the structures that inform it

Vocabulary

� galumphing
− exploiting variability by doing something in a

deliberately over-elaborate way
− adding lots of unnecessary but inert actions that are

inexpensive and shouldn’t (in theory) affect the test
outcome

− …but sometimes they do affect it!

72

To test is to compose, edit, narrate,
and justify two parallel stories.

You must tell a story about the product…

…about how it failed, and how it might fail...
…in ways that matter to your various clients.

But also tell a story about testing…

…how you configured, operated and observed it…
…about what you haven’t tested, yet…
…or won’t test, at all…
…and about why what you did was good enough.

dddd

Copyright © 1995-2010, Satisfice, Inc. and DevelopSense

73

Project
Environment

Tests

Product
Elements

Quality
Criteria

Perceived
Quality

A Heuristic Test Strategy
Model

What if you have
an unframed test?

But if you can’t do it perfectly, or right
away, that might be okay. Why?

How can you justify
an unframed test?

