
1

Copyright © 2010, DevelopSense

1

of Software Testing

Michael Bolton
DevelopSense

Scottish Testing Group
May 2010

Two Futures
of Software Testing

Acknowledgements

• James Bach
• some of the material comes from the Rapid Software

Testing Course, of which James is the senior author
and I am co-author

• Cem Kaner
• Bret Pettichord
• Jerry Weinberg
• Jonathan Kohl
• Justin Webster (HP)
• Annmarie Haynes (HP)
• Special thanks to Dennis Hong (HP)

of Software Testing

These are not the only two futures.
They’re offered for your consideration.

The choices are up to you.

These are not predictions.
These are proposals.

The Dark Future:
Testing ISN’T About Learning

• Testing is focused on confirmation,
verification, and validation

• Testing is merely checking to make sure that
prescribed tests pass

• Even though we’re in a “knowledge
economy”, we believe that some knowledge
can be unpleasant and dangerous, thus…

• Exploration and investigation are luxuries at
best, threats at worst

The Dark Future:
Automation is Paramount

• Very simply, machines are better than
people; that should be obvious

• By eliminating the human element, we can
eliminate variability and uncertainty

• Sure, high-level test automation takes time
and effort to prepare, therefore…

• …we must slow down development to let
“testing” catch up

The Dark Future:
Change is Rejected

• Nothing is more important than following
our plans and our processes strictly
• our clients will understand, of course
• if they want to change the requirements, we say they

should have known that from the beginning
• and if they don’t like that, we’ll call them names like

“immature” or “unprofessional”

• By insisting that requirements don’t
change, we can eradicate project risk

2

Copyright © 2010, DevelopSense

2

The Dark Future:
Measurement

• We measure
• requirements scope by counting requirements
• test coverage by counting test cases
• product quality by counting bugs
• the value of testers by counting bug reports
• developer output by counting lines of code
• complexity by counting code branches

The Dark Future:
Measurement

• We don’t measure by
• qualitative measures
• direct observation
• interaction between testers and programmers
• conversation with actual users

• We don’t trust stories; we only trust
statistics

• We don’t worry about construct validity or
other problems in measurement

The Dark Future:
Putting The Testers In Charge

• Testers are the quality gatekeepers
• Testers refuse to test until they have been

supplied with complete, unambiguous, up-
to-date requirements documents

• Testers “sign off” on project readiness
• Testers can block releases
• Testers are the real project managers,

because project managers don’t know
what’s good for them

Not
The Dark Future:

Putting The Testers In Charge

• Although testers are called the quality
gatekeepers…
• they don’t have control over the schedule
• they don’t have control over the budget
• they don’t have control over staffing
• they don’t have control over product scope
• they don’t have control over market conditions or

contractual obligations

Not
The Dark Future:

Putting The Testers In Charge

• Although testers are called the quality
gatekeepers…
• they don’t have control over the schedule
• they don’t have control over the budget
• they don’t have control over staffing
• they don’t have control over product scope
• they don’t have control over market conditions or

contractual obligations

The Dark Future:
Promoting Orthodoxy

• All testers must pass multiple choice exams
• Testing doesn’t require skilled labour
• All testers have the same skills
• Testers must be isolated from developers
• All tests must be scripted
• Investigation is banned; variation suppressed
• Testing is standardized across departments

and throughout the “industry”

3

Copyright © 2010, DevelopSense

3

Standardization
• There shall be One True Way to Test
• There shall be one universal language for

testing
• and since American and British consultants

promote it, it shall be English
• Agile approaches can still be made very

orthodox, if we follow the book
• If we find it hard to apply the practices,

we’ll say that we apply them, and that will
be good enough

The Dark Future:
Some Of Our Proudest Accomplishments

The Dark Future:
Some Of Our Proudest Accomplishments

The Dark Future:
Some Of Our Proudest Accomplishments

The Dark Future:
Some Of Our Proudest Accomplishments

The Dark Future:
Pathologies

• Places knowledge and learning up front, at the
beginning of the project
• when we know the least about it!

• Testing is confused with checking
• Learning through the project is ignored
• Testing is considered to be rote, unskilled work
• Machines are trusted; human cognition is

devalued
• Measurement is riddled with basic critical

thinking errors
• primarily reification error and rotten construct validity

4

Copyright © 2010, DevelopSense

4

The Dark Future:
Pathologies

• Testers implicitly run the project when it’s
convenient for management to let them

• Even though testers are essentially powerless
• testers don’t have control over schedule, budget, staffing,

contractual obligations, product scope, or reward systems

• testers neither create nor hide the bugs
• …testers are still held responsible for all quality lapses

• Even in the Agile world, we’re working on the
problems with testers, but we still haven’t quite
got our heads straight about…

The Dark Future:
Pathologies

• Testers implicitly run the project when it’s
convenient for management to let them

• Even though testers are essentially powerless
• testers don’t have control over schedule, budget, staffing,

contractual obligations, product scope, or reward systems

• testers neither create nor hide the bugs
• …testers are still held responsible for all quality lapses

• Even in the Agile world, we’re working on the
problems with testers, but we still haven’t quite
got our heads straight about…

The worst thing about
the dark future is…

The worst thing about
the dark future is…

This is our role.
We see things for what they are.

We make informed decisions about quality possible,
because we think critically about software

The Bright Future:
Testers Light The Way

This is our role.
We see things for what they are.

We make informed decisions about quality possible,
because we think critically about software

BUT

The Bright Future:
Testers Light The Way

5

Copyright © 2010, DevelopSense

5

This is our role.
We see things for what they are.

We make informed decisions about quality possible,
because we think critically about software

BUT
We let project owners make the business decisions.

The Bright Future:
Testers Light The Way

The Bright Future:
Value is Central

• Testing is a deeply human activity.
• It’s all about value for people.
• It’s strengthened by the unique

contribution of the individual tester.
• The product is a solution. If the problem

isn't solved, the product doesn't work,
AND…

• If the product doesn’t work, the problem
isn’t solved.

The Bright Future:
Testing Isn’t Just Checking

• Checking is a process of confirming and
verifying existing beliefs
• Checking can (and I argue, largely should) be done

mechanically
• It is a non-sapient process

See http://www.developsense.com/2009/08/testing-vs-checking.html

The Bright Future:
Testing Isn’t Just Checking

• Checking is a process of confirming and
verifying existing beliefs
• Checking can (and I argue, largely should) be done

mechanically
• It is a non-sapient process

I’m very fast…
but I’m slow.

See http://www.developsense.com/2009/08/testing-vs-checking.html

What IS Checking?

• A check has three attributes
• It requires an observation
• The observation is linked to a decision rule
• The observation and the rule can be applied

Oh no! What Does “Sapient” Mean?

• “Sapient” means “requiring human wisdom”
• A non-sapient activity can be performed

by a machine
that can’t think

(but is quick and precise)

by a human who has been
instructed NOT to think

(and who is slow and erratic)

6

Copyright © 2010, DevelopSense

6

Checking IS Important

• Checks help to establish baseline
functionality in test-driven development

• Checks serve as change detectors
• Excellent checking helps programmers to

refactor (improve the quality of existing
code without changing functionality) at top
speed

• Checks provide a first-line defense against
regression problems

…But Checking Has Limitations

• Checks tend to be designed early…
• …when we know less than we’ll ever know

about the product and the project
• Checks focus on “pass vs. fail?”
• Skilled testers focus on a different

question:

…But Checking Has Limitations

• Checks tend to be designed early…
• …when we know less than we’ll ever know

about the product and the project
• Checks focus on “pass vs. fail?”
• Skilled testers focus on a different

question:

Checking ISN’T New

• Despite what the Agilists might have you believe,
checking is not new
• D. McCracken (1957) refers to “program checkout”
• Jerry Weinberg: checking was important in the early

days because
• computer time was expensive
• programmers were cheap
• the machinery was so unreliable

• Checking has been rediscovered by the Agilists
• centrally important to test-driven development,

refactoring, continuous integration & deployment
• successful checking must be surrounded by skilled

testing work

The Danger of Test Scripts

• Scripts aren’t necessary for
skilled (human) testers

• Script preparation takes away
from testing time

• Bugs found and fixed during
script prep tend to stay fixed

• Scripts separate design,
execution, interpretation, and
learning…and thus DE-SKILL

• Scripts drive inattentional
blindness

See Kaner, “The Value of Checklists
and The Danger of Scripts”

http://www.kaner.com

Positive Test Strategy

• “A tendency to test cases that are
expected (or known) to have the property
of interest rather than those expected (or
know) to lack that property.”

• “…can be a very good heuristic for
determining the truth or falsehood of a
hypothesis under realistic conditions.”

• It can, however, lead to systematic errors
or inefficiencies.

• Klayman and Ha, 1987

7

Copyright © 2010, DevelopSense

7

Escaping the Positive Test Strategy Trap

• When people seek matches, they use relatively few
tests to counter their hypotheses
• that is, they tend to run confirmatory tests

• When the categories are relabeled from yes and no
to two neutral categories (“DAX” and “MED”), people
use even fewer “negative” tests (Tweeny et. al.,
1980)

• BUT… they run positive tests for each category
• which gets around the problem

Positive Test Strategy

• “When concrete, task-specific information is
lacking, or cognitive demands are high, people
rely on the positive test strategy as a general
default heuristic.” BUT…

• “emphasis on the sufficiency of one’s actions is
enhanced when one is rewarded for each
individual success rather than only for the final
rule discovery.”

• Klayman and Ha, 1987

The Great Traps of Test Cases

If you want to know
how the system works and fails,

The Bright Future:
Repeatability vs. Adaptability

• Repeatability, for computers, is relatively easy
• Skilled testing therefore focuses on adaptability,

value, and threats to value

The Bright Future:
Repeatability vs. Adaptability

• Repeatability, for computers, is relatively easy
• Skilled testing therefore focuses on adaptability,

value, and threats to value

Humans can…

anticipateempathize judge
recognize

appreciate

predict

teach

strategize

learn
charter

work around a problem
make conscious decisions

collaborate resource
model

invent

get frustrated

become resigned
assess

evaluate

project

question

refine

investigate speculate
suggest

contextualize elaborate

reframe

refocus

troubleshoot

recognize new risks

8

Copyright © 2010, DevelopSense

8

Humans can…

anticipateempathize judge
recognize

appreciate

predict

teach

strategize

learn
charter

work around a problem
make conscious decisions

collaborate resource
model

invent

get frustrated

become resigned
assess

evaluate

project

question

refine

investigate speculate
suggest

contextualize elaborate

reframe

refocus

troubleshoot

recognize new risks

THINKFEEL

The Bright Future:
Testing IS Exploring

• Our community sees testing as exploration,
discovery, investigation, and learning
• Testing can be assisted by machines, but can’t be done

by machines alone
• Testing is a sapient process

See http://www.developsense.com/2009/08/testing-vs-checking.html

The Bright Future:
Testing IS Exploring

• Our community sees testing as exploration,
discovery, investigation, and learning
• Testing can be assisted by machines, but can’t be done

by machines alone
• Testing is a sapient process I can’t test,

but I can help
you act on
test ideas.

See http://www.developsense.com/2009/08/testing-vs-checking.html

What IS Exploratory Testing?

• Simultaneous test design, test
execution, and learning.

• James Bach, 1995

But maybe it would be a good idea to underscore
why that’s important…

What IS Exploratory Testing?

• Simultaneous test design, test
execution, and learning, with an
emphasis on learning.

• Cem Kaner, 2005

But maybe it would be a good idea to be
really explicit about what goes on…

What IS Exploratory Testing?

• I follow (and to some degree contributed to) Kaner’s definition,
which was refined over several peer conferences through 2007:

Exploratory software testing is…

• a style of software testing
• that emphasizes the personal freedom and responsibility
• of the individual tester
• to continually optimize the value of his or her work
• by treating test design, test execution, test result

interpretation, and test-related learning
• as mutually supportive activities
• that run in parallel
• throughout the project.

See Kaner, “Exploratory Testing After 23 Years”,
www.kaner.com/pdfs/ETat23.pdf

Whoa. Maybe it
would be a good

idea to keep it brief
most of the time…

9

Copyright © 2010, DevelopSense

9

Why Explore?

• You cannot use a script to
• investigate a problem that you’ve found
• decide that there’s a problem with a script
• escape the script problem you’ve identified
• determine the best way to phrase a report
• unravel a puzzling situation

Why Explore?

• You cannot use a script to
• investigate a problem that you’ve found
• decide that there’s a problem with a script
• escape the script problem you’ve identified
• determine the best way to phrase a report
• unravel a puzzling situation

So why don’t we hear more about E.T.?

• Maybe managers fear that E.T. depends on skill
• but who benefits from ANY unskilled testing?

• Maybe managers fear that E.T. is unstructured
• but it is structured

• Maybe managers fear that E.T. is unaccountable
• but it can be entirely accountable

• Maybe managers fear that E.T. is unmanageable
• but you can manage anything if you put your mind to it

FEAR
The Bright Future

• The Bright Future of Testing is all about
exploration, discovery, and investigation

• To get management past the fear and into
the value, we need to address issues of
• Skill
• Structure
• Accountability
• Management

• We need to learn them and practice them

“Because we are humans, we will tend to believe what we
want to believe, not what the evidence justifies. When we
have been working on a program for a long time, and if
someone is pressing us for completion, we put aside our
good intentions and let our judgment be swayed. So
often, then, the results must provide the impartial
judgment that we cannot bring ourselves to pronounce.”

The Bright Future
Comes From The Past

Herbert Leeds and Gerald M. Weinberg, Computer Programming Fundamentals, 1961

“One of the lessons to be learned from such experiences is that the
sheer number of tests performed is of little significance in itself.
Too often, the series of tests simply proves how good the computer
is at doing the same things with different numbers. As in many
instances, we are probably misled here by our experiences with
people, whose inherent reliability on repetitive work is at best
variable. With a computer program, however, the greater problem
is to prove adaptability, something which is not trivial in human
functions either. Consequently we must be sure that each test does
some work not done by previous tests. To do this, we must struggle
to develop a suspicious nature as well as a lively imagination.”

The Bright Future
Comes From The Past

Herbert Leeds and Gerald M. Weinberg, Computer Programming Fundamentals, 1961

10

Copyright © 2010, DevelopSense

10

of Software Testing

These are not the only two futures.
They’re offered for your consideration.

The choices are up to you.

The future of testing
is up to us.

Who I Am

Michael Bolton
(not the singer, not the guy in Office Space)

DevelopSense, Toronto,
Canada

mb@developsense.com
+1 (416) 992-8378

http://www.developsense.com

Web Resources

• Michael Bolton
http://www.developsense.com

• James Bach http://www.satisfice.com
• Cem Kaner http://www.kaner.com
• The Florida Institute of Technology

• http://www.testingeducation.org
• http://www.testingeducation.org/BBST/index.html

• StickyMinds http://www.StickyMinds.com
• Risks Digest http://catless.ncl.ac.uk/risks

Bibliography
How To Think About Testing

• Perfect Software and Other Illusions About Testing
• Gerald M. Weinberg

• Lessons Learned in Software Testing
• Cem Kaner, James Bach, and Bret Pettichord

• “Software Testing as a Social Science”
• Cem Kaner; http://www.kaner.com/pdfs/KanerSocialScienceSTEP.pdf

• Testing Computer Software
• Cem Kaner, Jack Falk, and Hung Quoc Nguyen

• An Introduction to General Systems Thinking
• Gerald M. Weinberg

• Exploring Requirements: Quality Before Design
• Gerald M. Weinberg

Bibliography
Recommended Test Technique Books

• A Practitioner’s Guide to Test Design
• Lee Copeland

• How to Break Software
• James Whittaker

• How to Break Software Security
• James Whittaker and Herbert Thompson

• Lessons Learned in Software Testing
• Cem Kaner, James Bach, and Bret Pettichord

• Testing Applications on the Web
• Hung Quoc Nguyuen

• Hacking Web Applications Exposed
• Joel Scambray and Mike Shema

Bibliography
Jerry Weinberg

• Quality Software Management Vol. 1: Systems
Thinking

• Quality Software Management Vol. 2: First
Order Measurement

• Secrets of Consulting: How to Give and Get
Advice Successfully

• Anything by Jerry Weinberg

11

Copyright © 2010, DevelopSense

11

Bibliography
Richard Feynman

• The Pleasure of Finding Things Out
• see the Appendix to the Challenger Report.

• Surely You’re Joking, Dr. Feynman!
Adventures of a Curious Character

• What Do You Care About What Other
People Think?

Bibliography
Other Areas

• The Social Life of Information
• Paul Duguid and John Seely Brown

• Please Understand Me
• David Kiersey
• The Myers-Briggs Type Inventory, which provides insight into

your own preferences and why other people seem to think so
strangely

• The Visual Display of Quantitative Information
• Edward Tufte
• How to present information in persuasive, compelling, and

beautiful ways
• A Pattern Language

• Christopher Alexander et. al
• A book about architecture
• even more interesting as a book about thinking and creating

similar but unique things—like computer programs and tests for
them

