
1

Copyright © 1996-2000, Satisfice, Inc.

1

Testing, Checking & Tools

FreeTest
Trondheim, Norway

March 2010

Michael Bolton
DevelopSense

http://www.developsense.com

Testing Isn’t Just Checking

Checking is a process of confirming and
verifying existing beliefs
− Checking can (and I argue, largely should) be done

by automation
− It is a non-sapient process

See http://www.developsense.com/2009/08/testing-vs-checking.html

What IS Checking?

A check has three attributes
− It requires an observation
− The observation is linked to a decision rule
− The observation and the rule can be applied

Oh no! What Does “Sapient” Mean?

“Sapient” means “requiring human wisdom”
A non-sapient activity can be performed

by a machine
that can’t think

(but is quick and precise)

by a human who has been
instructed NOT to think

(and who is slow and erratic)

What Is Sapience?

A sapient activity is one that requires a
thinking human to perform
We test not only for repeatability, but also for
adaptability, value, and threats to value

Checking IS Important…

Despite what the Agilists might have you believe,
checking is not new
− D. McCracken (1957) refers to “program checkout”
− Jerry Weinberg: checking was important in the early days because

− computer time was expensive
− programmers were cheap
− the machinery was so unreliable

Checking has been rediscovered by the Agilists
− centrally important to test-driven development, refactoring,

continuous integration & deployment
− worthwhile checking must surrounded by good testing work

CHECks are CHange detECtors

2

Copyright © 1996-2000, Satisfice, Inc.

2

…But Checking Has Limitations

Checks tend to be designed early…
…when we know less than we’ll ever know
about the product and the project
Checks focus on “pass vs. fail?”

But…

A good tester doesn’t just ask

A good tester asks

Machines can’t…

anticipateempathize judge
recognize

appreciate

predict

teach

strategize

learn
charter

work around a problem
make conscious decisions

collaborate resource
model

invent

get frustrated

become resigned
assess

evaluate

project

question

refine

investigate speculate
suggest

contextualize elaborate

reframe

refocus

troubleshoot

recognize new risks

Humans can…

anticipateempathize judge
recognize

appreciate

predict

teach

strategize

learn
charter

work around a problem
make conscious decisions

collaborate resource
model

invent

get frustrated

become resigned
assess

evaluate

project

question

refine

investigate speculate
suggest

contextualize elaborate

reframe

refocus

troubleshoot

recognize new risks

THINKFEEL

Testing IS Exploring

Our community sees testing as exploration,
discovery, investigation, and learning
− Testing can be assisted by machines, but can’t be done

by machines alone
− Testing is a sapient process I can’t test,

but I can help
you act on
test ideas.

See http://www.developsense.com/2009/08/testing-vs-checking.html

What IS Exploratory Testing?

Simultaneous test design, test
execution, and learning.

−James Bach, 1995

But maybe it would be a good idea to underscore
why that’s important…

3

Copyright © 1996-2000, Satisfice, Inc.

3

What IS Exploratory Testing?

Simultaneous test design, test execution,
and learning, with an emphasis on
learning.

−Cem Kaner, 2005

But maybe it would be a good idea to be
really explicit about what goes on…

What IS Exploratory Testing?

I follow (and to some degree contributed to) Kaner’s definition,
which was refined over several peer conferences through 2007:

Exploratory software testing is…

• a style of software testing
• that emphasizes the personal freedom and responsibility
• of the individual tester
• to continually optimize the value of his or her work
• by treating test design, test execution, test result

interpretation, and test-related learning
• as mutually supportive activities
• that run in parallel
• throughout the project.

See Kaner, “Exploratory Testing After 23 Years”,
www.kaner.com/pdfs/ETat23.pdf

Whoa. Maybe it
would be a good

idea to keep it brief
most of the time…

Besides…

You cannot use a script to
− program a script
− investigate a problem you’ve found
− decide that there’s a problem with a script
− escape the script problem you’ve identified
− determine the best way to phrase a report
− unravel a puzzling situation

Checking Requires Testing

A check is skill-free,
but it is dominated by

testing skill.

Before the Check

Recognize a risk
Translate to a test idea
Express a test idea as a bit
Turn the question into
code
Determine the trigger
Encode the trigger

Testing skill
Testing skill
Testing skill
Programming
skill
Testing skill
Programming
skill

After The Check

Read the bit
Aggregate bits
Design a report
Encode the report
Observe the report
Determine meaning
Determine
significance
Respond

Programming skill
Programming skill
Testing, design skill
Programming skill
Testing skill
Testing skill
Testing skill
Testing,
programming, and
management skill

4

Copyright © 1996-2000, Satisfice, Inc.

4

19

Project
Environment

Tests

Product
Elements

Quality
Criteria

Perceived
Quality

A Heuristic Test Strategy Model The Four-Part Risk Story

Some person
might suffer harm or loss
because of a vulnerability in the product
triggered by some threat.

Excellent checking reduces
risks of unexpected implementation

behaviour and of change.

Excellent risk-based testing
is less about calculating
and more about learning.

Oracles

An oracle is
a heuristic
principle
or mechanism
by which
someone
might

recognize
a problem.

(usually works, might fail)

(but not decide conclusively)
Bug (n): Something that

bugs someone who matters

Consistency (“this agrees with that”)
an important theme in oracles

Consistency heuristics rely on the quality of your
models of the product and its context.

Comparable Products
History

User Expectations

Claims

StandardsProductPurpose

Image

Test Coverage Isn’t Just Code
Coverage

There are as many kinds of coverage
as there are ways to model the product.

Test coverage is the amount of the
system space that has been tested.

Capability
Reliability
Usability
Security

Scalability

Performance
Installability

Compatibility
Supportability

Testability

Maintainability
Portability

Localizability• Structure
• Function
• Data
• Platform
• Operations
• Time

Test Techniques

Function testing: test what it does

Domain testing: test what it does things to

Stress testing: overwhelm or starve the product

Flow testing: do one thing after another

Scenario testing: test to a story

Claims testing: test what people say

User testing: involve the users

Risk testing: anticipate a problem

Automatic testing: run a zillion tests

5

Copyright © 1996-2000, Satisfice, Inc.

5

Cost as a Simplifying Factor
Try quick tests as well as careful tests

In my travels, I’ve seen extraordinary emphasis
on long cycles of planning without feedback.

This makes testing ineffective and slow.

A quick test is a cheap test that has some value,
gives fast feedback, but requires little preparation,

knowledge, or time to perform.

Bursts of quick tests represent a great way
to discover risks upon which

careful testing can be better focused.

Non-Rapid Test Automation

1. Obtain a sophisticated GUI test execution tool
(extra points if you overpay for it).

2. Define a lot of low-value manual tests.
3. Hire an automation team to automate each one.
4. Build a comprehensive test library and

framework.
5. Keep fixing it.

This can work if your product is
very easy to test and it doesn’t change much.

Does that describe your product?

“Step right up!”

“Automated tests execute
a sequence of actions

without human intervention.”

Actual text from a
Microsoft whitepaper
on automated testing

“Step right up!”

“This approach helps eliminate
human error, and provides faster results. ”

“Step right up!”

“Since most products require tests
to be run many times,

automated testing generally leads
to significant labor cost savings

over time. ”

“Step right up!”

“Typically a company will
pass the break-even point

for labor costs after just
two or three runs of an automated test.”

6

Copyright © 1996-2000, Satisfice, Inc.

6

This argument boils down to:

Computers
are better than
People!

Reckless Assumptions

Testing is a “sequence of actions”

Actually, testing is better viewed as
an interactive cognitive process.

Tools don’t test;
they may play a role in the test.

1

Reckless Assumptions

Testing means repeating the same
actions over and over.

2

Testing has repetitive elements,
but it isn’t as repetitive as it seems,
and variety is critical to the process.

Use tools to enhance variety,
rather than repetition.

Reckless Assumptions

We can automate testing actions.

3

Actually, in most cases we can only
automate a subset of testing actions,
for the rest, we need human testers.

Testing dominates checking.

Reckless Assumptions

An automated test is faster,
because it needs no human intervention.

4

Faster simulation of keystrokes & clicks
is not the same as faster testing.

Human intervention is reduced during
execution, but increased during diagnosis.

Reckless Assumptions

Automation reduces human error.

5

It reduces one kind of human error,
but it multiplies other kinds of error.

Automation allows us to do many kinds of
bad testing faster than ever.

7

Copyright © 1996-2000, Satisfice, Inc.

7

Reckless Assumptions

We can quantify the costs and benefits
of manual vs. automated testing.

6

Manual testing and automated testing
involve very different costs and benefits,

many of which are hidden.

Reckless Assumptions

Automation will lead to
"significant labor cost savings."

7

It can reduce some kinds of labor,
while incurring other kinds.

Avoid narrow analyses.

Reckless Assumptions

Automation will not harm the test project.

8

Test automation can distract testers,
obscure the true test strategy,

and provide a false sense of security.

Towards a better model
of test automation…

Test automation is…

Tool-Supported Exploration

Test generation (data and script generators). Tools
might create specialized data such as randomized email messages,
or populate databases, or generate combinations of parameters that
we’d like to cover with our tests.
System configuration. Tools might preserve or reproduce
system parameters, set systems to a particular state, or create or
restore “ghosted” disk drives.
Simulators. Tools might simulate sub-systems or environmental
conditions that are not available (or not yet available) for testing, or
are too expensive to provide live on demand.
Test execution (harnesses and test scripts). Tools
might operate the software itself, either simulating a user working
through the GUI, or bypassing the GUI and using an alternative
testable interface.

Tool-Supported Exploration

Probes. Tools might make visible what would otherwise be invisible
to humans. They might statically analyze a product, parse a log file, or
monitor system parameters.
Oracles. An oracle is any mechanism by which we detect failure or
success. Tools might automatically detect certain kinds of error
conditions in a product.
Activity recording & coverage analysis. Tools might watch
testing as it happens and retrospectively report what was and was not
tested. They might record actions for later replay in other tests.
Visualization: Tools can help us to display data sets, highlight key
elements, map relationships, illustrate timing…
Test management. Tools might record test results; organize test
ideas or metrics.

8

Copyright © 1996-2000, Satisfice, Inc.

8

Test tools are all over the place.

On your desktop (never forget spreadsheets and text editors)
Web-based web testing resources (HTML checkers, accessibility
analyzers, Rubular, BrowserShots.org)
Scripting languages (Perl, Ruby, Python, TCL) and associated libraries
Shareware repositories (www.download.com)
O/S monitoring tools (www.sysinternals.com)
Open source testware (www.opensourcetesting.org,
www.sourceforge.com)
Spyware for monitoring exploratory tests (www.spectorsoft.com)
Any Microsoft development tool (they always include useful utilities)
Microsoft compatibility toolkit Windows Resource Kit and other free
tools (www.microsoft.com)
The cubicle next door… (someone else in your company has a tool for
you)

Key Points:

Testing is intellectual, not just clerical.
Test automation is software development.
Automation skill and automation projects aren’t cheap.
Tools can accelerate, extend, and enhance a good test
process, but can slow down, limit, and degrade a poor one.
Test automation is a promising idea that often falls far short
of its promise.

These are warnings.
You can be very successful with test tools

if you cope with these problems well.

Acknowledgements

Much of this material is from Rapid
Software Testing and Rapid Software
Testing for Managers, by James Bach and
Michael Bolton

Who I Am

Michael Bolton
(not the singer, not the guy in Office Space)

DevelopSense, Toronto,
Canada

mb@developsense.com
+1 (416) 992-8378

http://www.developsense.com

Web Resources

• Michael Bolton
http://www.developsense.com
• http://www.developsense.com/blog/category/testing-vs-checking/

• James Bach http://www.satisfice.com
• Cem Kaner http://www.kaner.com
• The Florida Institute of Technology

• http://www.testingeducation.org
• http://www.testingeducation.org/BBST/index.html

• StickyMinds http://www.StickyMinds.com
• Risks Digest http://catless.ncl.ac.uk/risks

Bibliography
How To Think About Testing

Perfect Software and Other Illusions About
Testing
− Gerald M. Weinberg

Lessons Learned in Software Testing
− Cem Kaner, James Bach, and Bret Pettichord

“Software Testing as a Social Science”
− Cem Kaner;

http://www.kaner.com/pdfs/KanerSocialScienceSTEP.pdf

An Introduction to General Systems Thinking
− Gerald M. Weinberg

Exploring Requirements: Quality Before Design
− Gerald M. Weinberg

9

Copyright © 1996-2000, Satisfice, Inc.

9

Bibliography

Testing Computer Software
− Cem Kaner, Jack Falk, and Hung Quoc Nguyen

A Practitioner’s Guide to Test Design
− Lee Copeland

How to Break Software
− James Whittaker

Hacking Web Applications Exposed
− Joel Scambray and Mike Shema

The Visual Display of Quantitative Information
− Edward Tufte
− How to present information in persuasive, compelling, and

beautiful ways

