
1

Exploratory Testing
and Leadership

Michael Bolton
DevelopSense

http://www.developsense.com
November 2009

What IS Exploratory Testing?

• Simultaneous test design, test
execution, and learning.

• James Bach, 1995

But maybe it would be a good idea to underscore
why that’s important…

What IS Exploratory Testing?

•Simultaneous test design, test execution,
and learning, with an emphasis on learning.

•Cem Kaner, 2005

But maybe it would be a good idea to be
really explicit about what goes on…

What IS Exploratory Testing?
• I follow (and to some degree contributed to) Kaner’s definition,

which was refined over several peer conferences through 2007:

Exploratory software testing is…

• a style of software testing
• that emphasizes the personal freedom and responsibility
• of the individual tester
• to continually optimize the value of his or her work
• by treating test design, test execution, test result

interpretation, and test-related learning
• as mutually supportive activities
• that run in parallel
• throughout the project.

See Kaner, “Exploratory Testing After 23 Years”,
www.kaner.com/pdfs/ETat23.pdf

Whoa. Maybe it
would be a good

idea to keep it brief
most of the time…

Testing Isn’t Just Checking

• Checking is a process of confirming and
verifying existing beliefs
• Checking can (and I argue, largely should) be

done by automation
• It is a non-sapient process

See http://www.developsense.com/2009/08/testing-vs-checking.html

Oh no! What Does “Non-Sapient” Mean?

• A non-sapient activity can be performed

by a machine
that can’t think

(but it’s quick and precise)

by a human who has been
instructed NOT to think

(and that’s slow and erratic)

2

What is Checking?

• A check has three attributes
• It requires an observation
• The observation is linked to a decision rule
• The observation and the rule can be applied

• by a machine
• by a sufficiently disengaged human

What Is Sapience?

• A sapient activity is one that requires a
thinking human to perform

• We test not only for repeatability, but also for
adaptability, value, and threats to value

Checking IS Important
• Despite what the Agilists might have you believe,

checking is not new
• D. McCracken (1957) refers to “program checkout”
• Jerry Weinberg: checking was important in the early

days because
• computer time was expensive
• programmers were cheap
• the machinery was so unreliable

• Checking has been rediscovered by the Agilists
• centrally important to test-driven development,

refactoring, continuous integration & deployment
• excellent checking is surrounded by testing work

• CHECks are CHange detECtors

But…

• A good tester doesn’t just ask

• A good tester asks

Testing IS Exploring

• Testing, as I see, it is all about exploration,
discovery, investigation, and learning
• Testing can be assisted by machines, but can’t

be done by machines alone
• It is a sapient process I can’t do that,

but I can help you
act on your ideas.

See http://www.developsense.com/2009/08/testing-vs-checking.html

Humans can…

anticipateempathize
judge

recognize
appreciate

predict

teach

strategize

learn
charter

work around a problem
make conscious decisions

collaborate resource
model

invent

get frustrated

become resigned
assess
evaluate

project

question

refine

investigate speculate
suggest

contextualize elaborate

reframe

refocus

troubleshoot

recognize new risks

3

Machines can’t…

anticipateempathize
judge

recognize
appreciate

predict

teach

strategize

learn
charter

work around a problem
make conscious decisions

collaborate resource
model

invent

get frustrated

become resigned
assess
evaluate

project

question

refine

investigate speculate
suggest

contextualize elaborate

reframe

refocus

troubleshoot THINK

recognize new risks

FEEL
The Danger of Scripts

• Scripts aren’t necessary for
skilled (human) testers

• Script preparation takes away
from testing time

• Bugs found and fixed during
script prep tend to stay fixed

• Scripts separate design,
execution, interpretation, and
learning…and thus DE-SKILL

• Scripts drive inattentional
blindness

See Kaner, “The Value of Checklists
and The Danger of Scripts”

http://www.kaner.com

Besides…

• You cannot use a script to
• investigate a problem you’ve found
• decide that there’s a problem with a script
• escape the script problem you’ve identified
• determine the best way to phrase a report
• unravel a puzzling situation

So why don’t we hear more about E.T.?

• Maybe managers fear that E.T. depends on skill
• but who benefits from ANY unskilled testing?

• Maybe managers fear that E.T. is unstructured
• but it is structured

• Maybe managers fear that E.T. is unaccountable
• but it can be entirely accountable

• Maybe managers fear that E.T. is unmanageable
• but you can manage anything if you put your mind to it

FEAR

17

Skill vs. Alternatives

skill

procedureenvironment

supervision
The greater the skill of

the tester, the less
prescribed procedure,

supervision, or
favorable environment

is required.

-Idea
-Idea

…

Heuristics are applied, not followed.

1. Do this
2. Then do this
3. Then do this
4. Then do this
5. And then this…

This…

…not this.
Scripted procedures

give the illusion of control

over unskilled testers.

The skilled tester
remains in control of

the process.

4

Exploratory Testing IS Structured

• We’ve studied the structure of ET, we’ve written
about it, and we know how to teach it

• The structure of ET comes from many sources:
• Test design heuristics
• Chartering
• Time boxing
• Perceived product risks
• The nature of specific tests
• The structure of the product being tested
• The process of learning the product
• Development activities
• Constraints and resources afforded by the project
• The skills, talents, and interests of the tester
• The overall mission of testing

In other words,
it’s not “random”,

but systematic.

Not procedurally
structured, but

cognitively structured.

20

Tests

Project
Environment

Product
Elements

Quality
Criteria

Perceived
Quality

A Heuristic Test Strategy Model

21

Project
Environment

Tests

Product
Elements

Quality
Criteria

Perceived
Quality

A Heuristic Test Strategy Model Oracles

An oracle is
a heuristic
principle
or mechanism
by which
someone
might recognize
a problem.

(usually works, might fail)

(but not decide conclusively)
Bug (n): Something that

bugs someone who matters

Consistency (“this agrees with that”)
an important theme in oracles

Consistency heuristics rely on the quality of your
models of the product and its context.

Comparable Products
History

User Expectations

Claims

StandardsProductPurpose

Image

Test Coverage Isn’t Just Code Coverage

There are as many kinds of coverage
as there are ways to model the product.

• Time

• Platform
• Operations

• Data
• Functional
• Structure

Test coverage is the amount of the
system space that has been tested.

Capability
Reliability
Usability
Security

Scalability

Performance
Installability

Compatibility
Supportability

Testability

Maintainability
Portability

Localizability

5

Cost as a Simplifying Factor
Try quick tests as well as careful tests

In my travels, I’ve seen extraordinary emphasis
on long cycles of planning without feedback.

This makes testing ineffective and slow.

A quick test is a cheap test that has some value,
gives fast feedback, but requires little preparation,

knowledge, or time to perform.

Bursts of quick tests represent a great way
to discover risks upon which

careful testing can be better focused.

26

What Does Rapid ET Look Like?
Concise Documentation Minimizes Waste

Risk ModelCoverage Model Test Strategy
Reference

Risk CatalogTesting Heuristics
General

Project-

Specific
Status

Dashboard
Schedule BugsIssues

Accountability for Exploratory Testing:
Session-Based Test Management

• Charter
• A clear, concise mission for a test

session
• Time Box

• 90-minutes (+/- 45)
• Reviewable Results

• a session sheet—a test report whose
raw data can be scanned, parsed and
compiled by a tool

• Debriefing
• a conversation between tester and

manager or test lead

vs.

27
For more info, see http://www.satisfice.com/sbtm

How To Measure Test Coverage
(it’s not merely code coverage)

• Identify quality criteria
• Identify session time focused on each criterion
• Consider product elements (structure, function,

data, platform, operations, and time)
• Break them down into coverage areas
• Assess test coverage in terms of

• Level 1: Smoke and sanity
• Level 2: Common, core, critical aspects
• Level 3: Complex, challenging, harsh, extreme,

exceptional

How To Measure ET Efficiency

Track rough percentage of time
spent on
• Test design and execution
• Bug investigation and reporting
• Setup

Produces
coverage

Interrupts
coverage

Ask why time was spent on each:
• Lots on T might indicate great code, but might indicate poor bug-

finding skill
• Lots on B might mean code quality problems, but might suggest

inefficiency in reporting
• Lots on S might mean testability or configuration problems for

customers, or it might mean early days of testing

How To Manage Exploratory Testing

Guide testers with personal supervision and
concise documentation of test ideas. Meanwhile,
train them so that they can guide themselves and
be accountable for increasingly challenging work.

Test
Ideas

Achieve excellent test design by
exploring different test designs

while actually testing and
interacting with the system

Product

Product
or spec

Checks

Tests

6

What Is Leadership?

• "Leadership is the process of creating an
environment in which everyone is
empowered."

• Gerald M. Weinberg,
Becoming a Technical Leader

• Leaders require freedom and responsibility
to optimize the quality of their work, while
granting freedom and responsibility to others
to do the same.

What Does A Leader Do?

• Performs complex cognitive tasks
• Has access to a large number of models
• Applies the models to absorb, process, and

respond to whatever information is available
• Responds, flexibly and adaptably, to whatever

complications the situation presents
• Empowers (teams of skilled technical) people
• Learns rapidly and observes keenly
• Is introspective and self-critical
• Motivates, organizes, and innovates

Key Ideas

• All managers should be leaders, but
managers are not the only leaders

• Managers who relinquish control foster
environments in which leadership can
blossom

• Managers who seize control and won’t let go
destroy leadership

Motivation: How To Kill It

• Make people feel that change will not be
appreciated

• Do everything for them so they won’t feel the
need to do things themselves

• Discourage anything that people might enjoy
doing for its own sake

Gerald M. Weinberg, Becoming a Technical Leader

Organization: How To Foster Chaos

• Encourage such high competition that
co-operation will be unthinkable

• Keep resources slightly below the necessary
minimum

• Suppress information of general value, or
bury it in an avalanche of meaningless words
and paper

Gerald M. Weinberg, Becoming a Technical Leader

Ideas: How To Suppress the Flow

• Don’t listen when you can criticize
• Give your own ideas first, and loudest
• Punish those who offer suggestions
• Keep people from working together
• Above all, tolerate no laughter

Gerald M. Weinberg, Becoming a Technical Leader

7

Leadership Is Exploratory!

• A leader
• both grants and receives

freedom with responsibility
• doesn’t follow a script
• fosters fault-tolerant environments
• fosters and practices learning
• practices critical thinking

In other words,
it’s not “random”,

but systematic.

Not procedurally
structured, but

cognitively structured.

People I DO See As Leaders

• People who question what they see and hear
• like participants in Edista’s Test Republic

• People who exchange their ideas
• like participants in The Bangalore Workshops on

Software Testing
• People who practice their craft

• like the Weekend Testers
• (see the presentation this afternoon!)

People I DO NOT See As Leaders

• People who are afraid to speak truth to power
• Those who do not actively question the outdated

testing mythodologies
• Those who disempower other people

• those (including, alas, Indian managers) who see testers
(and especially Indian testers) as hopelessly unskilled

• anyone involved with scripted testing (unless the script is
for a machine)

• certificationists; people who participate in or promote the
empty certifications that we currently have

• Western organizations that help promote this stuff

How Do Programmers Program?

• Do we use programming cases?
• Do we follow programming scripts?

• Is there a step-by-step procedure for the development of
every program?

• Does each programming task have an expected,
predicted result?

• Do we evaluate programmers by counting the lines
of code they write?

• Do we evaluate programmer performance by
“coding error escape rates”?

• Do we aspire to reduce the cost of programming by
bringing in development automation?

How Do Managers Manage?

• Do we use management cases?
• Do we follow management scripts?

• Is there a step-by-step procedure for every management
action?

• Does each management action have an expected,
predicted result?

• Do we evaluate managers by counting their
decisions?

• Do we evaluate management performance by
“bad decision escape rates”?

• Do we aspire to reduce the cost of management by
bringing in management automation?

So… What Do We Want?

• If we want to miss important problems slowly
• emphasize confirmation
• emphasize repetition
• then complain about how little time we have

• If we want to find important problems quickly
• reduce wasted time and wasted effort
• prevent regression problems
• emphasize exploration, discovery, investigation
• train and empower testers
• grant them freedom and responsibility for the quality of

their work

8

What if we train our people
and they leave?

Author unknown, but I’m envious of him/her.

Acknowledgements

• James Bach (http://satisfice.com)
• Cem Kaner (http://www.kaner.com)
• Jerry Weinberg (http://www.geraldmweinberg.com)

Questions? More information?

Michael Bolton
http://www.developsense.com
michael@developsense.com

Readings

• Perfect Software and Other Illusions About Testing
• Becoming a Technical Leader
• Quality Software Management, Vol. 1: Systems Thinking
• Quality Software Management, Vol. 2: First Order Measurement

• Gerald M. Weinberg
• Lessons Learned in Software Testing

• Kaner, Bach, and Pettichord
• DevelopSense Web Site (and blog), http://www.developsense.com

• Michael Bolton
• Satisfice Web Site (and blog), http://www.satisfice.com

• James Bach
• Collaborative Software Testing, http://www.kohl.ca

• Jonathan Kohl
• Quality Tree Software, http://www.qualitytree.com

• Elisabeth Hendrickson

