
Two Futures of Software Testing Copyright © 2006 Michael Bolton

of Software Testing

Michael Bolton
DevelopSense

Software Testing and Performance Conference
October 2009

Two Futures
of Software Testing

Two Futures of Software Testing Copyright © 2006 Michael Bolton

of Software Testing

These are not the only two futures.
They’re offered for your consideration.

The choices are up to you.

These are not predictions.
These are proposals.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Dark Future:
Testing ISN’T About Learning

Testing is focused on confirmation,
verification, and validation
Exploration and investigation are needless
luxuries that we cannot afford

Thou shalt not taste of the fruit of
the tree of new knowledge.

In the Dark Future, testing is a relentlessly routine, mechanical activity, even when it’s done by humans. It’s
not about learning, it’s about confirming things that we already know, answering questions for which we
already have the answer, repeating the same mindless tests over and over again. There’s no place in the Dark
Future for exploration, investigation, or discovery, or learning, and that means that there’s no place for skill,
creativity, or imagination. Nor is there room for asking questions about the customers and how they might
value our product. We just do what we’re told, and we learn nothing.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Dark Future:
Testing is CHECKING

A check has three attributes
− an observation
− linked to a decision rule
− both of which can be performed non-sapiently

Humans are slow and fallible
− thus their role in checking should be de-emphasized

Machines are simply better than people.

In the Dark Future, testing is a relentlessly routine, mechanical activity, even when it’s done by humans. It’s
not about learning, it’s about confirming things that we already know, answering questions for which we
already have the answer, repeating the same mindless tests over and over again. There’s no place in the Dark
Future for exploration, investigation, or discovery, or learning, and that means that there’s no place for skill,
creativity, or imagination. Nor is there room for asking questions about the customers and how they might
value our product. We just do what we’re told, and we learn nothing.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Dark Future:
Automation is Paramount

By eliminating the human element, we
can eliminate variability and uncertainty
Sure, high-level test automation takes
time and effort to prepare, therefore…
…we must slow down development to let
“testing” catch up

Know thine automation,
for it shall tell thee what is correct.

The Dark Future puts automation at the centre of the testing process. After all, computer software runs on
computers, so what better than a computer to make sure that everything is okay?
In the Dark Future, we will again ignore problems with our assumptions. First, we’ll ignore that there are
vastly more factors in the success or failure of a computer program than functional correctness. We’ll also
ignore the fact that test automation is itself a software development project, subject to the same kinds of
problems as the applications we’re testing. We’ll ignore any potential for confirmation bias—that we’ll tend
to run tests that confirm our beliefs. And we’ll ignore automation bias—the bias associated with being
convinced that something is so because a machine says it’s so, and to be blinded to problems that automation
doesn’t tell us about.
Most significantly, we’ll focus on correctness and not on value.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Dark Future:
Change is Rejected

Nothing is more important than following
our plans and our processes strictly
− our clients will understand, of course
− if they want to change the requirements, we say

they should have known that from the beginning

By insisting that requirements don’t
change, we can eradicate project risk

Remember the plan, and keep it holy.

In the Dark Future, it is the role of the tester—excuse me, the Quality Assurance Analyst—to inhibit change.
Change brings a chance of invalidating things that we believe we know about the product and the project, and
thus change involves risk. So even though the customer needs, the market conditions, the schedule, the
budget, the product scope, the staff, and everything else about the project might change, we should stay the
course and stick to the plan. It doesn’t matter if we learn things through the course of developing the product;
we should have known those things beforehand. It’s not merely our job to inform; we must also enforce.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Dark Future:
Measurement

We measure
− requirements scope by counting requirements
− test coverage by counting test cases
− product quality by counting bugs
− the value of testers by counting bug reports
− developer output by counting lines of code
− complexity by counting code branches

Reject the words of the heretic Einstein.
If it can be counted, it MUST count.

Requirements, productivity, complexity, test coverage, product quality, and tester value are influenced by
dozens, hundreds of factors that we could observe. Yet most of these factors are not tangible or countable in a
meaningful way, and simplistic attempts to count instances of them are practically guaranteed to mislead. In
the Dark Future, we make these problems go away by ignoring them.
A requirement is not a line or a paragraph in a document; those things are representations—literally re-
presentations—of the difference between what someone has and what someone desires. Counting a
requirement by counting a line in a requirements document ignores everything about the meaning and the
significance of the requirement, like counting tricycles and space shuttles as equivalent. Despite this, we’ll
simply apply the idea that there should be one test case traceable to each requirement. No, wait! Two! One
positive test case and one negative test case.
A line of code is a representation of an idea. A line of code can be as simple as placing a value in a CPU
register or as complex as a multi-branch, multi-condition decision point. A developer’s job is about learning,
solving problems, and shaping and reshaping solutions. Sometimes that means removing lines of code rather
than adding them. There’s far more to a developer’s job than counting the number of characters that she’s
typed. Lines of code are just scaled-up versions of the same silly measure.
Cem Kaner has said that a test case is a question that we want to ask about the product. As James Bach has
said many times, a test case is a container for a question. In the Dark Future, we’ll evaluate the quality of
work in an office by counting the briefcases that come in the door every morning. We won’t bother to look
inside them. If more briefcases come in, it’s obvious that the quality of the company’s work will improve.
A bug is not a thing in the world. A bug is a construct; thought-stuff; a mental thing. It’s a relationship
between some person and some product, such that some other person might not view it as a bug. Even when
two people or more agree that some behaviour seems to be a bug, they may disagree on the significance of the
bug. Despite this, in the Dark Future, we’ll just count ’em. More bugs means higher quality; fewer bugs
means lower quality. That applies to testers too. We’ll ignore all the other activities and dimensions of value
that a tester might bring to a project, and count their bug reports to measure their effectiveness.
We’ll certainly ignore problems associated with simple metrics by avoiding Software Engineering Metrics:
What Do They Measure and How Do We Know? by Cem Kaner and Pat Bond
(http://www.kaner.com/pdfs/metrics2004.pdf); the classic How To Lie With Statistics, by Darrell Huff; Quality
Software Management, Vol. 2: First Order Metrics by Gerald M. Weinberg; and especially Measuring and
Managing Performance in Organizations, by Robert D. Austin.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Dark Future:
Measurement

We don’t measure by
− qualitative measures
− direct observation
− interaction testers and programmers
− conversation with actual users

We don’t trust stories; we only trust
statistics

If you can’t count it, it can’t be trusted.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Dark Future:
Putting The Testers In Charge

Testers are the quality gatekeepers
Testers refuse to test until they have been
supplied with complete, unambiguous, up-to-
date requirements documents
Testers “sign off” on project readiness
Testers can block releases

Thou shalt worship no other
project managers but we.

In the Dark Future, testers are in the driver’s seat. It is we who decide whether the product should ship or not.
It is our signature that managers must obtain to be sure that they’re shipping a quality project, and our
permission that they must obtain to release it. We decide when to start testing, and we do so only when the
product and the accompanying documentation adhere to our rigourous standards. We’re not obliged to follow
these standards ourselves, of course; that’s not our role. In the Dark Future, our role is to tell other people
what they’re doing wrong and how to do it right.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Dark Future:
Promoting Orthodoxy

All testers must pass multiple choice exams
Testing doesn’t require skilled labour
All testers have the same skills
Testers must be isolated from developers
All tests must be scripted
Investigation is banned; variation suppressed

Thou shalt not stray from
thine appointed path.

In the Dark Future, testers will be evaluated based on their ability to memorize testing terms from a particular
authority’s body of knowledge. Context or interpretation have no place in the Dark Future. Exams should
always be set up for the convenience of the certifiers, so multiple choice is definitely the way to go here. If
there are concerns that this approach is insufficient to evaluate skills, no worries: testing isn’t an especially
skilled trade anyway. There will be some testers who are able to write code, but testing is mostly an
uninteresting, repetitious, confirmatory task anyway.
We don’t want testers to be hobnobbing with the developers (that is, the programmers—but programmers are
the only developers in the Dark Future). Testers are too weak-willed to avoid the pernicious influence of
programmers, so mingling might compromise the testers’ objectivity. Testers might even be tempted not to
report bugs.
Repeatability is very important in the Dark Future. We want to run the same tests over and over, without
variation, because variation might lead to unpredictability. Discovering and investigating bugs could throw
our whole schedule off.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Standardization
There shall be One True Way to Test
There shall be one universal language for
testing
− and since American and British consultants

promote it, it shall be English
Agile approaches can still be made very
orthodox, if we follow the book.

Know thy standards,
for they shall tell thee how to think.

In the Dark Future, ISO Standard 29119 will tell us what to test and how to test it. “Whatever type of testing
you do, it will affect you.” It doesn’t matter if the people who drafted the standard know your business; they’re
experts, and they know better than you what’s good for you. “The standard uses a four layer process model
starting with two organizational layers covering test policy and organizational test strategy. The next layer
moves into project management, while the bottom layer defines the fundamental test process used for all levels
of testing, such as unit testing, system testing, acceptance testing, and the test types (e.g. performance and
usability testing). Parts 2 and 3, on process and documentation respectively, are particularly closely linked as
all outputs from the test processes potentially correspond to documents defined in the document part. There is
also a ‘new work item’ being suggested that would see a fifth part initiated on test process improvement –
imagine a testing industry without the emergence of another new test improvement model every couple of
years.” Doesn’t that sound swell? Not only will they be telling you what to do, but also how to improve it–
despite the acknowledged caveat, “Probably the biggest complaint raised against IT standards is that they do
not meet the needs of actual practitioners – most of us have come across such ‘shelfware’.” Don’t worry
about the standard being unmanageable, either. The current draft of Part 2 of the standard is, as of this writing,
a mere 100 pages.
Note also that there is a standard vocabulary associated with the standard. That standard vocabulary will be in
English. Translating it into other languages will only increase complexity and ambiguity. Let’s all just test in
English. If other cultures don’t like that… well, tough. There’s not much to learn from them anyway.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Dark Future: Some Of Our
Proudest Accomplishments

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Dark Future: Some Of Our
Proudest Accomplishments

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Dark Future: Some Of Our
Proudest Accomplishments

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Dark Future: Some Of Our
Proudest Accomplishments

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Dark Future: Some Of Our
Proudest Accomplishments

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Dark Future:
Pathologies

Places knowledge and learning up front, at the
beginning of the project
− when we know the least about it!

Testing and checking are confused.
Thinking and learning through the project are ignored
Testing is unskilled work
Machines are trusted; human cognition is devalued
Measurement is riddled with basic critical thinking
errors
− primarily reification error and rotten construct validity

Many dark visions of the future devalue the skill, freedom, and responsibility of the individual tester in various
ways.
Dark visions devalue the significance of learning, which is of the essence of software development, and which
is one of the primary tasks of the tester. A principle of the context-driven school of software testing is that
projects unfold over time in ways that are often unpredictable. The planned product and the actual product
tend to diverge from one another, starting on the first day of the project, and getting farther apart as we learn
new things. One option is to prepare a detailed, heavyweight test plan, and then to spend a large amount of
time updating it—time that might be better spent on interacting with and investigating the product. Another
option to do a lot of planning in advance, and then abandon it and fly by the seat of our pants. A third option,
though, is to recognize that we are going to learn something new every day, and so to produce lightweight,
adaptable plans that can be updated quickly and easily. As Cem Kaner has pointed out, why do a huge amount
of wasteful preparatory work at the beginning of the project—the very time that we’ll know less than we’ll
ever know about it?
Reification error is the practice of taking constructs—thought-stuff—and mistaking them for tangible things in
the world.
Construct validity is the degree to which our metrics and measurements accurately reflect real attributes of the
thing that we’re measuring. When so much related to software development and quality is based on subjective
perception, construct validity is very difficult to achieve when we use numbers alone. That’s okay; in the
Dark Future, we’ll ignore that problem.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Dark Future:
Pathologies

Testers implicitly run the project when it’s convenient
for management to let them
Even though testers are essentially powerless, they do
get blamed for lapses
− even though bugs have been created by others
− even though bugs are hidden

In the Agile world, we’re working on the problems
with testers, but we still haven’t quite got our heads
straight about…

In the Dark Future, testers have blame without responsibility, culpability without authority. Since they were
the last people to have their hands on the code, it is assumed that any undetected problems are their fault.
Testers are required to sign documents asserting that the product is acceptable for release, even though the
release of the product is a business decision, rather than a technical one.
In the Dark Future, all product failures are seen as testing failures. There’s no recognition that problems are
problems for the whole development team. Read the paper, and you’ll see over and over that problems are
pinned on poorly tested software. Not poorly programmed software, nor poorly managed projects, not poorly
conceived products, not poorly developed requirements. Product problems are testing problems; no more, no
less.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The worst thing about
the dark future is…

Two Futures of Software Testing Copyright © 2006 Michael Bolton

This is our role.
We see things for what they are.

We make informed decisions about quality possible,
because we think critically about software.

We let the customer make the business decisions.

The Bright Future
Testers Light The Way

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
The Gospel of Liberation

Testing is
a deeply human activity.

It’s strengthened by
the unique contribution of

the individual tester.

In the Bright Future, we emphasize humanity. We focus on the fact that our products are being developed to
help real people solve real problems. We recognize that each tester brings a unique perspective, a distinct set
of skills, and a particular suite of experiences to the table.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Value Is Central

It’s all about value
for people.

In the Bright Future, helping the managers and the project community to understand value is one important
role of the tester. (We don’t say “the most important role”, because we’re aware that changing contexts mean
changing priorities.) From one perspective, testers don’t add value; we don’t write or change the code, and we
don’t make decisions about the scope of the product. Instead, we help to defend the value that’s there by
alerting management to important problems that threaten that value. From another perspective, testers may
add value by identifying alternative uses for the product—potential purposes or approaches towards using the
product that may not have been realized before we started interacting with it. Perhaps the most comprehensive
view of the tester’s relationship with value is to suggest a different view of what we’re testing: if the product
is a system—the sum of the code and everything we know about it—then testers add value by adding to the
overall knowledge of the system.
This means much more than knowledge about functional correctness. To a great degree, in the Bright Future,
the programmers will take care of a lot of that, through improved design and unit testing. In the Bright
Futures, testers will be guided by Cem Kaner’s definition of a computer program
(http://www.kaner.com/pdfs/KanerSocialScienceSTEP.pdf). Kaner says that a computer program is not
merely “a set of instructions for a computer.” Instead, a computer program is “a communication among
several humans and computers, distributed over distance and time, that contains instructions that can be
executed by a computer.” In the Bright Future, testers will evaluate the quality of that communication and its
value to stakeholders. We’ll recognize and test for the many dimensions of quality—capability, reliability,
usability, security, scalability, installability, performance, installability, compatibility, supportability,
testability, maintainability, portability, and localizability. We’ll investigate and probe the product and its
relationships to the systems and people with which it connects.
We’ll remember that the product is a solution to a problem, and if the problem isn’t solved, then the product
doesn’t work.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Testing Isn’t Just Checking

Checking is a process of confirming and
verifying existing beliefs
− Checking can (and I argue, largely should) be done

mechanically
− It is a non-sapient process

I’m very fast…
but I’m slow.

See http://www.developsense.com/2009/08/testing-vs-checking.html

Two Futures of Software Testing Copyright © 2006 Michael Bolton

What IS Checking?

A check has three attributes
− It requires an observation
− The observation is linked to a decision rule
− The observation and the rule can be applied

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Oh no! What Is Sapience?

A sapient activity is one that requires a
thinking human to perform
A non-sapient activity can be performed by
− a machine (quickly and precisely)
− or by a human that has decided NOT to think (slowly and

fallibly)
− looks like machines win there, right?

BUT our job is not merely to test for
repeatability, but also for adaptability and
value

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Testing IS Exploring

Testing as I see it is all about exploration,
discovery, investigation, and learning
− Testing can be assisted by machines, but can’t be done by

machines alone
− It is a sapient process I can’t do that,

but I can help you
act on your ideas.

See http://www.developsense.com/2009/08/testing-vs-checking.html

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Skill Is Central

It’s not about certification.
It’s about skill.

The state of tester certification as of this writing should be seen as an embarrassment to the craft. Tester
certification (in particularly that provided by the ISTQB Foundation Level Certification) is itself the epitome
of bad testing. Its purpose is not to certify, but as Tom DeMarco suggests, it’s to decertify—to shut out people
who haven’t shelled out money to the certification board for the exam (and optionally to its accredited training
providers). Testing glossaries are prescriptive, attempting to define abstract concepts with one (and usually
only one) definition. By suggesting that there’s one, and only one right answer to testing questions, the exams
run counter to Jerry Weinberg’s observation that a tester is someone who knows that things could be different.
Tester skill is at the centre of all excellent testing. Important skills include

•critical thinking – recognizing bias and thinking errors;
•general systems thinking – coping with complexity, models, observation, and interactions between
systems;
•context-driven thinking – coping with changing situations and values;
•scientific thinking – designing and performing experiments, and recognizing that knowledge of
something is never final;
•cognitive skills – learning and using lots of observational modes;
•communication skills – writing, recording, and reporting;
•rapid learning – leveraging all of the means at our disposal, including exploration, to increase
understanding; and
•programming – putting the machine to work for us so that we can create our own tools.
Obviously, this is not even close to being a comprehensive list. Obviously, different testers will have
different interests, different skills, and different skill levels. That’s all to the good. Diversity of skill
brings diversity of approaches, and that’s helpful in finding many and varied bugs in many and varied
products.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Testing is About Learning

Innovative ideas come
from outside the craft.

A tester once told me about a problem that his company encountered with a police dispatching system that was
designed to be used in a number of cities. The designers and owners of the product believed that everything
was okay, and a pilot deployment appeared to go well. However, each city had somewhat different policies
and practices. Although the system worked well for the first city, other cities reported serious problems.
The company addressed the issue by sending testers out to observe actual users of the system. At first the
testers merely watched, and said very little. Over a few days, the testers were able to refine their observations
and their questions for the users, and were even able to observe problems that the users themselves didn’t quite
notice. This is similar to the practice of participant observation, a key aspect of the social science of
anthropology.
Over the last couple of years, I’ve read a number of books about economics, about neurology, about the way
we process emotions, about evolution, about medicine, about general systems, about psychology, about
heuristics. None of them are books about testing… yet all of them are books about testing. Each has
something of great value that the testing community could put to work.
Perhaps Cem Kaner says it best in his talks about testing as a social science. Like the social sciences,
excellent testing is about determining the impact of a software product on people; it involves work with both
quantitative and qualitative research; it requires tolerance for ambiguity, partial answers, and situationally
specific results; issues related to ethics and values are relevant; diversity of values and interpretations is
normal; and observer bias is a fact of life and is well-managed. Testing cannot provide us with complete
answers. But testing does provide us with partial answers that might be useful. In the Bright Future, testers
will study and use approaches from the social sciences, in addition to those from computer science,
engineering, and mathematics.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Value Is Central

Correctness is important,
but testers don’t get hung up on it.

Testers ask more than pass vs. fail?”
Testers ask “Is there a problem here?”

When we’re doing excellent testing, we’re learning things about the product on behalf of our clients and the
project community.
Confirmation, verification, and validation are important, but they’re mostly about checking. Checking is
especially important, especially useful, and especially inexpensive when programmers are doing it as part of
the process of writing a program. Testing in the Bright Future is something more that just checking. Among
other things, testing means actively engaging with the product, interacting with it, providing it with
challenging inputs, seeking extents and limitations, exercising it with complex scenarios, giving it a lengthy set
of tasks—one thing after another after another. As Jerry Weinberg points out in his book Perfect Software and
Other Illusions About Testing, testing is also about challenging the constraints of the situation to obtain
maximum relevant information for our clients at maximum speed. Often it’s about taking notice of things that
are hidden in plain sight; listening to the way people answer questions in addition to the content of the answer;
observing the way people interact with one another; and watching for the ways in which they might be gaming
the management systems.
Confirmation is about answering the questions “Does it do what we expect?” or “Is it still working?” In
general, such tests tend towards the scripted end of the exploratory/scripted continuum. In general, we ask
and answer the question “Can it work?” with tests that tend to be more exploratory and more challenging. Still
more challenging and more exploratory tests probe the product, asking “Will it work?” and “Is there a problem
here?” Part of our job is to help defend against anticipated problems—but another part is to discover problems
that no one else anticipated.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Testing is a Service

Testers don’t run the project.
Teams and the business

collborate to run the project.
The business gets what

the business wants.
Teams get to deliver it
at a sustainable pace.

Testers provide information to management so that management can make informed decisions about the
product and the project. Testers don’t make those decisions. We’re not the brains of the project; we’re the
antennae. We don’t drive the bus; we observe the traffic around us and the road ahead, and report to the bus
driver. We’re not the skipper or the helmsman; we’re in the crow’s nest.
Testers don’t write the code; we don’t debug the code; we don’t make changes to the code; we don’t have
control over the schedule; we don’t have control over the budget; we don’t have control over who works on
the project; we don’t have control over the scope of the product; we don’t have control over contractual
obligations; we don’t have control over bonuses for shipping on time; we don’t have control over whether a
problem gets fixed; we don’t have control over customer relationships. Other people, particularly
programmers and managers, handle that stuff. With so little that’s in our control, how can we be responsible
for quality? Management, not testing, makes the decisions; management, not testing, has the responsibility.
Testing is not the control mechanism; testing is one of the feedback mechanisms. We are responsible for the
quality of the information that we provide to management; that is, we are definitely responsible for the quality
of our own work. But the idea that we’re responsible for the quality of the product, or that we’re the only
voice of the customer, is ridiculous—and as Cem Kaner has pointed out, it’s offensive to other members of the
project community who can legitimately claim to be voices for the customer.
If you want superb discussions about quality and how testers interact with it, read Perfect Software and Other
Illusions About Testing; Quality Software Management Vol. 1: Systems Thinking; and Exploring
Requirements: Quality Before Design, by Jerry Weinberg. Read Lessons Learned in Software Testing by Cem
Kaner, James Bach, and Bret Pettichord. Read Cem Kaner’s brief article "I speak for the user: The problem of
agency in software development," (http://www.kaner.com/pdfs/I%20Speak%20for%20the%20User.pdf) and
his slide presentation “The Ongoing Revolution in Software Testing”
(http://www.kaner.com/pdfs/testingRevolution2007.pdf).

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Testing adapts

Testers embrace change.
Testers deal with uncertainty.
Testers handle time pressure.

Maturity is about flexibility,
not rigidity and repetition.

Change happens. We better serve our clients when we recognize that changes are their prerogative. We
recognize that no one can know everything there is to know about the product in advance of its being written.
We recognize that market conditions change, and that our projects and our products must adapt. We recognize
that, as we develop and test the program, we will discover requirements of which the development team was
previously unaware. We try to help the project community to anticipate what might be on the horizon, but we
understand that things happen.
We’re amenable to management’s decisions about when to ship the product, whenever that may come. Our
role is to inform management of what has been tested and what hasn’t been tested; of what we know and what
we don’t yet know; of what further questions remain to be asked and answered. We can help to identify risks
associated with missing or partial information, but the decision to ship remains with the business. Instead of
trying to run the project, we focus our attention on investigating the product as quickly and as deeply as we
can with the time and the resources we have available.
In a biological system, a mature organism is one that can fend for itself without resorting to parental
protection. In software development, it seems that we have a different meaning for “maturity”: doing the
same things consistently. Shouldn’t maturity be about adaptability and responding appropriately, rather than
jumping up and down and protesting when someone doesn’t do things the way we’d like?

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Information In Context

Testers seek and provide
information.

Testers are skeptics.
Testers reject distorted

information.

In the Bright Future, testers are skeptics, not cynics. In a forthcoming book, James Bach points out that
skepticism is not the rejection of belief; it’s the rejection of certainty. We’re hired to help our clients become
more confident about their understanding of the system under test, but we can’t promise absolute certainty.
Part of our role is to maintain productive doubt when everyone else is certain that there are no problems here.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Testers Question and Learn

Testers actively question.
Testers do not merely confirm.

Testers explore, discover and investigate.
Testers learn for ourselves and our clients.

In our Rapid Software Testing course, senior author James Bach and I define testing as questioning a product
in order to evaluate it. Cem Kaner defines testing as “an empirical technical investigation of the product, done
on behalf of stakeholders, with the intention of revealing quality-related information of the kind that they seek.
These definitions are entirely compatible. One is more explicit; the other is shorter.
We focus on risk (but we do some testing that isn’t risk-based, the better to discover new risks). We
continuously develop new questions (but we’re prepared to stop testing at any time that the client withdraws
the mission). We take testing to be primarily investigative (but through investigative tests, we recognize that
we’re also getting confirmation). We’re delighted when programmers handle the bulk of the confirmatory
testing effort at the unit level, where automation is inexpensive and feedback is immediate (but if programmers
aren’t doing that kind of testing, we inform management of the risk and test accordingly). We develop skill in
exploratory testing, using concise documentation and rapid feedback to our clients (but that’s not to say that
we reject ideas about oracles and coverage from other sources). We ensure diligently that our work is entirely
accountable and stands up to scrutiny.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Change Happens

Testers emphasize test results
over test planning.

The green bar does not tell us that
development is done.
The green bar tells us

it’s time to start testing.

In the Bright Future, we’ll have learned lessons from Karl Weick in his book Sensemaking in Organizations.
We’ll have learned that maps and plans animate and orient people; they’re tools that help get us up on our feet,
looking around, and trying to make sense of the world around us. Maps and plans might help us get started,
but it’s what people think and what people do that makes the difference. We’ll learn from the past that it is
thinking and doing, not the plan, that generates results and knowledge, and we’ll learn to give credit to the
people who learn, and not to the plan.
This is not to say that we do no planning, but rather that we do as little planning as possible to guide and
accomplish the mission. Our focus is on interacting with the product, rather than detailing how we plan to do
it; observing everything that might be relevant, not just an explicit expected result; using the result of the most
recent test to help us decide what the next test should be.
In order to become good at this, we must become expert at chartering our testing concisely, recording our
actions appropriately, and reporting important observations cogently. This means developing skills in note-
taking, in the use of record-keeping tools, in dynamically managing the focus of our work, in rapid evaluation
and estimation.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Testers Focus on the Mission

Let’s think carefully
about automation.

Automation is
“any use of tools to

support testing.”

In 2006, the participants at the Workshop on Heuristic and Exploratory Techniques came up with this
definition of exploratory testing under the curatorship of Cem Kaner: “Exploratory testing is a style of testing
that emphasizes the freedom and responsibility of the individual tester to continually optimize the quality of
his or her work by treating test design, test execution, test result interpretation, and learning as activities that
continue in parallel throughout the project.” Continual optimization is a key component of this definition, and
a key activity in excellent testing.
Rather than preparing mounds of overly detailed plans, excellent testers consider alternative strategies. Might
it be more valuable to investigate the product or its artifacts for a while first, prepare lightweight planning
documents, and then test, placing the emphasis on test results rather than test plans? Rather than treating high-
level automated tests as an assumed good, excellent testers consider development, maintenance, and
opportunity costs balanced against the value that the automated tests provide. For each test or test cycle,
excellent testers try to reduce the costs of their work, and actively decide which is the most valuable test to
perform right now.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Machines Do Mechanical Work

Testers use tools to extend
(not replace) their human skills.
Test automation != automated testing

Exploratory testing != “manual” testing
Excellent checking, while valuable,
takes time to prepare and maintain.

In the Bright Future, we’ll take James Bach’s definition of test automation—any use of tools to support testing.
We’ll recognize that the key word in that definition is not “tools”, but “support”. Automation assists the
testing effort, but doesn’t replace it.
Automation is a medium, in the sense that Marshall McLuhan talked about media. McLuhan defined a
medium as anything that causes a change—a tool, a technology, a book, a cup of coffee; he wasn’t just
referring to communications media, but to all creations of the human mind. Every medium, he said, extends or
enhances or intensifies or accelerates some human capability in some way. Automation certainly does that.
But McLuhan also pointed out that every medium, when extended beyond its original or intended capacity,
reverses into the opposite of its original or intended effect. Cars make it possible to move far faster than we
can walk—but when there are too many cars, we have traffic jams, and in many cities at rush hour, it’s now
faster to walk than to drive. Mobile phones extend our presence to virtually everywhere on the planet, but if
we’re in conversation with someone whose mobile phone rings, their extended presence results in our own
disappearance—that person is no longer with us. Test automation, a medium is subject to the Laws of Media.
Automation is an extension of our minds and our capabilities. It doesn’t guarantee that we do a better job at
testing. If we’re doing bad testing, automation will allow us to do more bad testing, faster than ever. Is that
what we want?
Machines have all kinds of capabilities. They’re excellent for performing high-speed, simple- and single-
oracle tasks. They’re very reliable, and they don’t get tired. They can generate gobs of data, randomize
inputs, check for syntactical correctness. With visualization tools, they can assist people in performing high-
skill, high-cognition tasks. We can and should use automation tools wherever we can use their help. But we
should always remember that the tools are not the testers; we are.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Testers Focus on the Mission

Testers continually
consider cost vs. value.

Testers eliminate
wasteful activity.

In 2006, the participants at the Workshop on Heuristic and Exploratory Techniques came up with this
definition of exploratory testing under the curatorship of Cem Kaner: “Exploratory testing is a style of testing
that emphasizes the freedom and responsibility of the individual tester to continually optimize the quality of
his or her work by treating test design, test execution, test result interpretation, and learning as activities that
continue in parallel throughout the project.” Continual optimization is a key component of this definition, and
a key activity in excellent testing.
Rather than preparing mounds of overly detailed plans, excellent testers consider alternative strategies. Might
it be more valuable to investigate the product or its artifacts for a while first, prepare lightweight planning
documents, and then test, placing the emphasis on test results rather than test plans? Rather than treating high-
level automated tests as an assumed good, excellent testers consider development, maintenance, and
opportunity costs balanced against the value that the automated tests provide. For each test or test cycle,
excellent testers try to reduce the costs of their work, and actively decide which is the most valuable test to
perform right now.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Testers Deal With Complexity

Testing is complex,
so testers are diverse.

Testers seek simplification…
and then distrust it.

W. Ross Ashby coined the Law of Requisite Variety, which suggests that if one system is to control another,
the controlling system has to be more complex that the system being controlled. Applied to testing, the Law of
Requisite Variety suggests that “if you want to understand something complicated, you must complicate
yourself” (I wish I could remember who I’m quoting here).
There’s a meme afoot in the testing business that suggests that we should make testing easier. Certainly we
should make aspects of testing easier, but testing itself isn’t supposed to be easy if we’re investigating
something complex. The simpler and fewer our tests, in general, the simpler and fewer problems that we’ll
find. So how do we deal with complexity in software and in the uncountable business domains in which it
operates?
The answer, I believe is to complicate ourselves by broadening our knowledge, experience, and studies.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Narratives vs. Numbers

Testers emphasize
stories over numbers.

How do we measure the quality of testing or the quality of a product?
First of all, recognize the difference between inquiry metrics and control metrics, as James Bach and I often
discuss in our Rapid Software Testing class. Inquiry metrics prompt questions. They point us to things that
we could observe. Control metrics drive decisions. They assume that the metric tells us everything that we
need to know, and direct us to change our path. Control metrics are dangerous.
Second, prefer direct observation to more abstract measurement. Most kinds of software measurement are
aggregations of data that end up obscuring information.
Third, prefer qualitative rubrics or balanced scorecards to unidimensional counts of things that are themselves
abstractions. Read the publications above for more detail.
Skilled testing is storytelling. Journalism and investigative reporting are other disciplines from which testing
could learn; Jon Bach was trained as a journalist.
Testers compose, edit, and narrate cogent stories about the product, about how it can work and how it might
fail. Testers also describe how they got those stories, by telling stories about their testing—what they did, and
why they did it, what they didn’t do, and why they didn’t do it, and about why the testing was good enough.
Testers use stories to add depth and richness to operational models, use cases, and scenario tests.
Skilled testers and test managers encourage management to reject deceptive quantitative measures (for
example, counting test cases, counting requirements, or counting bugs) Some people suggest that “the
numbers speak for themselves.” They don’t, and if someone doesn’t speak for them, the listener will
spontaneously—and often unconsciously—invent a story to go with them. That’s why skilled testers don’t
supply numbers without a story—and why we tend to prefer leading with the story, using the numbers to back
it up.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Testers Focus on the Mission

Testers respond to
the mission.

Excellent testing is mission-focused. Cem Kaner and James Bach have enumerated a large number of possible
testing missions. The testing mission might be focused on finding the most important problems in the product;
it might be focused on finding as many problems as quickly as possible. It might include assurance that the
product is compliant with particular laws or specific standards. It might be focused on finding workarounds to
known problems. The mission might be to assist with ship/no-ship decisions, to assist the programmers in
developing test frameworks. Testing responds to these missions, whatever they might be.
If the mission requires lots of documentation and data, we supply it, but we regularly check to make sure that
it’s adding value. I can practically guarantee that someone will leave this presentation claiming that I advocate
no documentation, ever. I don’t advocate that, and the document you’re reading now is the documented
proof.
I advocate no documentation that wastes time and effort. If the mission requires lots of documentation, we
produce it—but we also question the mission, to make sure that our client recognizes that more documentation
usually means less testing, and to make sure that we’re clear on where the priority is. If the mission requires
lots of automated testing, we develop it, but we don’t stop brain-engaged interactive human tests. If the
mission requires us to suspend our skills, we do, but we do son on the understanding that someone else is
responsible for the quality of our work.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Testing is NOT about the mythodology.

We question testing folklore.

We think critically about our own work.

We question our context and our choices,
both of which evolve over time.

Testers Light The Way

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Testers Focus on the Mission

A cautionary note:
Agile testing

isn’t exactly new.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

“The programmer had learned, at least until next time, that no change, no matter how
trivial, can be made to a program without adequate testing. As Ben Franklin said,
'Experience keeps a dear school, but fools will learn in no other.' Anyone who has
experience with computers can relate a dozen similar stories and yet on and on they go.
Because we are humans, we will tend to believe what we want to believe, not what the
evidence justifies. When we have been working on a program for a long time, and if
someone is pressing us for completion, we put aside our good intentions and let our
judgment be swayed. So often, then, the results must provide the impartial judgment that
we cannot bring ourselves to pronounce. One of the lessons to be learned from such
experiences is that the sheer number of tests performed is of little significance in itself.
Too often, the series of tests simply proves how good the computer is at doing the same
things with different numbers. As in many instances, we are probably misled here by our
experiences with people, whose inherent reliability on repetitive work is at best variable.
With a computer program, however, the greater problem is to prove adaptability,
something which is not trivial in human functions either. Consequently we must be sure
that each test does some work not done by previous tests. To do this, we must struggle to
develop a suspicious nature as well as a lively imagination.”

The Bright Future
Comes From The Past

Herbert Leeds and Gerald M. Weinberg, Computer Programming Fundamentals, 1961

James Bach introduced me to this lovely passage. It was written in 1961, the topsy-turvy year in which I was
born. We’ve learned so much, and so little, since then. For me, as it emphasizes adaptability, skepticism, and
imagination, this passage tells us where we should be headed in the Bright Future.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Acknowledgements

James Bach
− some of the material comes from the Rapid Software

Testing Course, of which James is the senior author and I
am co-author

Cem Kaner
Bret Pettichord
Jerry Weinberg
Jonathan Kohl

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Who I Am

Michael Bolton
(not the singer, not the guy in Office Space)

DevelopSense, Toronto, Canada

mb@developsense.com
+1 (416) 992-8378

http://www.developsense.com

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Bibliography
How To Think About Testing

Perfect Software and Other Illusions About Testing
− Gerald M. Weinberg

Lessons Learned in Software Testing
− Cem Kaner, James Bach, and Bret Pettichord

“Software Testing as a Social Science”
− Cem Kaner; http://www.kaner.com/pdfs/KanerSocialScienceSTEP.pdf

Testing Computer Software
− Cem Kaner, Jack Falk, and Hung Quoc Nguyen

An Introduction to General Systems Thinking
− Gerald M. Weinberg

Exploring Requirements: Quality Before Design
− Gerald M. Weinberg

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Bibliography
Recommended Test Technique Books

A Practitioner’s Guide to Test Design
− Lee Copeland

How to Break Software
− James Whittaker

How to Break Software Security
− James Whittaker and Herbert Thompson

Lessons Learned in Software Testing
− Cem Kaner, James Bach, and Bret Pettichord

Testing Applications on the Web
− Hung Quoc Nguyuen

Hacking Web Applications Exposed
− Joel Scambray and Mike Shema

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Bibliography
Jerry Weinberg

Quality Software Management Vol. 1: Systems
Thinking
Quality Software Management Vol. 2: First Order
Measurement
Secrets of Consulting: How to Give and Get Advice
Successfully
Anything by Jerry Weinberg

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Bibliography
Richard Feynman

The Pleasure of Finding Things Out
− see the Appendix to the Challenger Report.

Surely You’re Joking, Dr. Feynman!
Adventures of a Curious Character
What Do You Care About What Other People
Think?

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Bibliography
Other Areas

• The Social Life of Information
− Paul Duguid and John Seely Brown

• Please Understand Me
• David Kiersey
• The Myers-Briggs Type Inventory, which provides insight into your

own preferences and why other people seem to think so strangely
• The Visual Display of Quantitative Information

• Edward Tufte
• How to present information in persuasive, compelling, and beautiful

ways
• A Pattern Language

• Christopher Alexander et. al
• A book about architecture
• even more interesting as a book about thinking and creating similar but

unique things—like computer programs and tests for them

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Web Resources

• Michael Bolton http://www.developsense.com
• James Bach http://www.satisfice.com
• Cem Kaner http://www.kaner.com
• The Florida Institute of Technology

• http://www.testingeducation.org
• http://www.testingeducation.org/BBST/index.html

• StickyMinds http://www.StickyMinds.com
• Risks Digest http://catless.ncl.ac.uk/risks

