
1

Why Does Testing
Take So Long?

Michael Bolton
DevelopSense

http://www.developsense.com
michael@developsense.com

If you’re a tester,
you’ve been asked…

…and if you haven’t been asked,
just stick around for a while.

2

But Hold On A Sec…

• There are always more conditions to check
• There are always more operations to perform
• There are always more platforms to set up
• There are always more variations of timing to try

Whether for a particular test, a given test cycle,
or a test project,

we stop testing when we decide to stop testing.

Testing Doesn’t Stop On Its Own

Whether for a particular test, a given test cycle,
or a test project,

we stop testing when we decide to stop testing.
development project,

So when might we decide to stop?

When we’ve exhausted the time that we initially
allocated for testing, we stop.

1. The “Time’s Up!” Heuristic.

Now that we know more,
might we want to allocate time for more investigation?

So when might we decide to stop?

We beat on the piñata until the candy starts falling out. The
first dramatic problem we find is enough to warrant stopping.

2. The Pinata Heuristic.

Might there be more interesting candy still inside?

3

So when might we decide to stop?

When there are so many bugs in the product that we can’t get
any useful information, there’s no point in continuing to test.

3. The Dead Horse Heuristic.

Might we see an even more dramatic problem if we continue?
Might all the problems we see be based on one issue?

I’m not
dead yet!

So when might we decide to stop?

When we’ve answered the questions that we
originally set out to answer, we stop testing.

4. The Mission Accomplished Heuristic.

Might the answers we’ve found trigger
new questions that we should be asking?

So when might we decide to stop?

When our client tells us to stop testing, we stop.

5. The Mission Abandoned Heuristic.

If we think there are important reasons to continue,
does our client know about them?

So when might we decide to stop?

If we’re confused, or ill-equipped, or have insufficient
information, or are blocked by some bug, we stop.

6. The “I Feel Stuck!” Heuristic.

With some help, could we get unstuck?
Could we proceed on some other path?

4

So when might we decide to stop?

When nothing changes in a load or stress test, no
matter how we vary the input, we stop testing.

7. The Flatline Heuristic.

Are we really varying the input sufficiently?
What might happen if we kept going?

So when might we decide to stop?
8. The Pause That Refreshes.

9. Customary Conclusion
10. Change Tack

Actually, all the previous heuristics
are founded on this one:

So when might we stop?

Are there any interesting questions left worth answering?
Are our tools and practices sufficiently inexpensive?

Are we finding information that is worth the cost of continuing?

11. The Cost vs. Value Heuristic.

Are there alternative choices that might be better for our current
context? Or could we really stop testing now?

5

The fact is… The decision to ship a product
IS NOT…
• made by the testers
• governed by rules
• a technical decision
• based on whether

testing is finished

IS…
• made by the client
• governed by heuristics
• a business decision
• based on whether

development is finished

Another fact is…

6

Test Session Effectiveness
• A “perfectly effective” testing session is one

entirely dedicated to test design, test
execution, and learning
– a “perfect” session is the exception, not the rule

• Test design and execution tend to contribute to
test coverage
– varied tests tend to provide more coverage than

repeated tests
• Setup, bug investigation, and reporting take

time away from test design and execution

Modeling Test Effort
Suppose that testing a feature takes two minutes

– this is a highly arbitrary and artificial
assumption—that is, it’s wrong, but we use
it to model an issue and make a point

• Suppose also that it takes an extra eight
minutes to investigate and report a bug that we
found with a test
– another stupid, sweeping generalization in

service of the point
• In a 90-minute session, we can run 45 feature

tests—as long as we don’t find any bugs

How Do We Spend Time?
(assuming all tests below are good tests)

C (bad)
B (okay)
A (good)

Module

80 minutes (8 bugs, 8 tests)
10 minutes (1 bug, 1 test)
0 minutes (no bugs found)

Bug reporting/investigation
(time spent on tests that find bugs)

1310 minutes (5 tests)
4180 minutes (40 tests)
4590 minutes (45 tests)

Number
of tests

Test design and execution
(time spent on tests that find no bugs)

Investigating and reporting bugs means….

or…

…or both.

• In the first instance, our coverage is great—but if we’re being assessed on the number of bugs
we’re finding, we look bad.
• In the second instance, coverage looks good, and we found a bug, too.
• In the third instance, we look good because we’re finding and reporting lots of bugs—but our
coverage is suffering severely. A system that rewards us or increases confidence based on the
number of bugs we find might mislead us into believing that our product is well tested.

7

What Happens The Next Day?
(assume 6 minutes per bug fix verification)

5
38
45

New tests
today

18
79
90

Total over
two days

40 min (4 new bugs)
10 min (1 new bug)
0

Bug reporting and
investigation today

48 min
6 min
0 min

Fix
verifications

2 min (1 test)
74 min (37 tests)
45

Test design and
execution today

Finding bugs today means….

or…

…or both.

…which means….

•…and note the optimistic assumption that all of our fixed verifications worked, and that we found
no new bugs while running them. Has this ever happened for you?

With a more buggy product
• More time is spent on bug investigation and

reporting
• More time is spent on fix verification
• Less time is available for coverage

With a less buggy product…
(that is, one that has had some level of testing already)

• We’ve got some bugs out of the way already
• Those bugs won’t require investigation and reporting
• Those bugs won’t block our ability to test more deeply

Test Early and Often!
• Recurrent themes in agile development (note the small A)

– test-first programming
– automated unit tests, builds, and continuous integration
– testability hooks in the code
– lots of customer involvement

• The ideas are
– to increase developers’ confidence in and commitment to

what they’re providing (“at least it does this”)
– to allow rapid feedback when it doesn’t do this
– to permit robust refactoring
– to increase test coverage and/or reduce testing time

8

Testing vs. Investigation
• Note that I just gave you a compelling-looking table,

using simple measures, but notice that we still don’t
really know anything about…
– the quality and relevance of the tests
– the quality and relevance of the bug reports
– the skill of the testers in finding and reporting bugs
– the complexity of the respective modules
– luck

…but if we ask better questions, instead of
letting data make our decisions,

we’re more likely to learn important things.

• Developer tests at the unit level
– use TDD, test-first, automated unit tests, reviews

and inspections, step through code in the
debugger—whatever increases your own
confidence that the code does what you think it
does

We Testers Humbly Request…
(from the developers)

We Testers Humbly Request…
(from the whole team)

• Focus on testability
– log files
– scriptable interfaces
– real-time monitoring capabilities
– installability and configurability
– test tools, and help building our own
– access to “live oracles” and other forms of information

9

Acknowledgements

• James Bach
• Dale Emery

Want to know more?

http://www.developsense.com/articles
“How Much Is Enough?”

Michael Bolton
DevelopSense

http://www.developsense.com
michael@developsense.com

